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One of the most exciting new subjects in Algebraic Number Theory and
Arithmetic Algebraic Geometry is the theory of Euler systems. Euler
systems are special collections of cohomology classes attached to p-
adic Galois representations. Introduced by Victor Kolyvagin in the late
1980's in order to bound Selmer groups attached to p-adic
representations, Euler systems have since been used to solve several
key problems. These include certain cases of the Birch and Swinnerton-
Dyer Conjecture and the Main Conjecture of Iwasawa Theory. Because
Selmer groups play a central role in Arithmetic Algebraic Geometry,
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Euler systems should be a powerful tool in the future development of
the field. Here, in the first book to appear on the subject, Karl Rubin
presents a self-contained development of the theory of Euler systems.
Rubin first reviews and develops the necessary facts from Galois
cohomology. He then introduces Euler systems, states the main
theorems, and develops examples and applications. The remainder of
the book is devoted to the proofs of the main theorems as well as some
further speculations. The book assumes a solid background in
algebraic Number Theory, and is suitable as an advanced graduate text.
As a research monograph it will also prove useful to number theorists
and researchers in Arithmetic Algebraic Geometry.


