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The problem of extending ideas and results on the dynamics of infinite
classical lattice systems to the quantum domain naturally arises in
different branches of physics (nonequilibrium statistical mechanics,
quantum optics, solid state, ...) and new momentum from the
development of quantum computer and quantum neural networks
(which are in fact interacting arrays of binary systems) has been found.
The stochastic limit of quantum theory allowed to deduce, as limits of
the usual Hamiltonian systems, a new class of quantum stochastic
flows which, when restricted to an appropriate Abelian subalgebra,
produces precisely those interacting particle systems studied in
classical statistical mechanics. Moreover, in many interesting cases, the
underlying classical process "drives" the quantum one, at least as far as
ergodicity or convergence to equilibrium are concerned. Thus many
deep results concerning classical systems can be directly applied to
carry information on the corresponding quantum system. The
thermodynamic limit itself is obtained thanks to a technique (the four-
semigroup method, new even in the classical case) which reduces the
infinitesimal structure of a stochastic flow to that of four semigroups
canonically associated to it (Chap. 1). Simple and effective methods to
analyze qualitatively the ergodic behavior of quantum Markov
semigroups are discussed in Chap. 2. Powerful estimates used to
control the infinite volume limit, ergodic behavior and the spectral gap
(Gaussian, exponential and hypercontractive bounds, classical and
quantum logarithmic Sobolev inequalities, ...) are discussed in Chap. 3.


