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This invaluable book is based on the notes of a graduate course on
differential geometry which the author gave at the Nankai Institute of
Mathematics. It consists of two parts: the first part contains an
introduction to the geometric theory of characteristic classes due to
Shiing-shen Chern and Andre Weil, as well as a proof of the Gauss-
Bonnet-Chern theorem based on the Mathai-Quillen construction of
Thom forms; the second part presents analytic proofs of the Poincare-
Hopf index formula, as well as the Morse inequalities based on
deformations introduced by Edward Witten. <br><i>Contents:</i>


