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"This book provides an introduction to Galois theory and focuses on
one central theme - the solvability of polynomials by radicals. Both
classical and modern approaches to the subject are described in turn in
order to have the former (which is relatively concrete and
computational) provide motivation for the latter (which can be quite
abstract). The theme of the book is historically the reason that Galois
theory was created, and it continues to provide a platform for exploring
both classical and modern concepts. This book examines a number of
problems arising in the area of classical mathematics, and a
fundamental question to be considered is: For a given polynomial
equation (over a given field), does a solution in terms of radicals exist?
That the need to investigate the very existence of a solution is perhaps
surprising and invites an overview of the history of mathematics. The
classical material within the book includes theorems on polynomials,
fields, and groups due to such luminaries as Gauss, Kronecker,
Lagrange, Ruffini and, of course, Galois. These results figured
prominently in earlier expositions of Galois theory, but seem to have
gone out of fashion. This is unfortunate since, aside from being of
intrinsic mathematical interest, such material provides powerful
motivation for the more modern treatment of Galois theory presented
later in the book. Over the course of the book, three versions of the
Impossibility Theorem are presented: the first relies entirely on
polynomials and fields, the second incorporates a limited amount of
group theory, and the third takes full advantage of modern Galois
theory. This progression through methods that involve more and more
group theory characterizes the first part of the book. The latter part of
the book is devoted to topics that illustrate the power of Galois theory
as a computational tool, but once again in the context of solvability of
polynomial equations by radicals"--


