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Have you ever come up against an application that felt like it was built
on sand? Maybe you've been tasked with creating an application that
needs to last longer than a year before a complete re-write? If so,
JavaScript at Scale is your missing documentation for maintaining
scalable architectures. There's no prerequisite framework knowledge
required for this book, however, most concepts presented throughout
are adaptations of components found in frameworks such as Backbone,
AngularJS, or Ember. All code examples are presented using
ECMAScript 6 syntax, to make sure your applications are ready


