
UNINA99108149905033211. Record Nr.

Titolo JavaScript at scale : build enduring JavaScript applications with scaling
insights from the front-line of JavaScript development / / Adam Boduch

Pubbl/distr/stampa Birmingham, [England] ; ; Mumbai, [India] : , : Packt Publishing, , 2015
©2015

ISBN 1-78528-487-8

Descrizione fisica 1 online resource (267 p.)

Collana Community Experience Distilled

Disciplina 005.2762

Soggetti JavaScript (Computer program language)

Lingua di pubblicazione Inglese

Formato

Livello bibliografico

Note generali Includes index.

Nota di contenuto Cover; Copyright; Credits; About the Author; About the Reviewers;
www.PacktPub.com; Table of Contents; Preface; Chapter 1: Scale from a
JavaScript Perspective; Scaling influencers; The need for scale; Growing
user base; Building new features; Hiring more developers; Architectural
perspectives; The browser is a unique environment; Component design;
Component communication; Load time; Responsiveness; Addressability;
Configurability; Making architectural trade-offs; Define your constants;
Performance for ease of development; Configurability for performance;
Performance for substitutability
Ease of development for addressabilityMaintainability for performance;
Less features for maintainability; Leveraging frameworks; Frameworks
versus libraries; Implement patterns consistently; Performance is built
in; Leverage community wisdom; Frameworks don't scale out-of-the-
box ; Summary; Chapter 2: Influencers of Scale; Scaling users; License
fees; Subscription fees; Consumption fees; Ad-supported; Open
source; Communicating users; Support mechanisms; Feedback
mechanisms; Notifying users; User metrics; Scaling users example;
Scaling features; Application value
Killer features versus features that killData-driven features; Competing
with other products; Modifying existing features; Supporting user
groups and roles; Introducing new services; Consuming real-time data;
Scaling features example; Scaling development; Finding development
resources; Development responsibilities; Too many resources; Scaling

Autore Boduch Adam

Materiale a stampa

Monografia



Sommario/riassunto

development example; Influencer checklist; User checklist; What's the
business model of our software?; Does our application have different
user roles?; Do our users communicate with each other using our
software?; How do we support our application?
How do we collect feedback from users?How do we notify users with
relevant information?; What type of user metrics should we collect?;
Feature checklist; What's the core value proposition of our software?;
How do we determine the feasibility of a feature?; Can we make
informed decisions about our features?; Who's our competition?; How
do we make what we have better?; How do we integrate user
management into our features?; Are our features tightly coupled to
backend services?; How does the front-end stay synchronized with
back-end data?; Developer checklist
How do we find the right development resources?How do we allocate
development responsibilities?; Can we avoid hiring too many
resources?; Summary; Chapter 3: Component Composition; Generic
component types; Modules; Routers; Models/Collections;
Controllers/Views; Templates; Application-specific components;
Extending generic components; Identifying common data and
functionality; Extending router components; Extending
models/collections; Extending controllers/views; Mapping features to
components; Generic features; Specific features; Decomposing
components; Maintaining and debugging components
Re-factoring complex components

Have you ever come up against an application that felt like it was built
on sand? Maybe you've been tasked with creating an application that
needs to last longer than a year before a complete re-write? If so,
JavaScript at Scale is your missing documentation for maintaining
scalable architectures. There's no prerequisite framework knowledge
required for this book, however, most concepts presented throughout
are adaptations of components found in frameworks such as Backbone,
AngularJS, or Ember. All code examples are presented using
ECMAScript 6 syntax, to make sure your applications are ready


