Record Nr.	UNINA9910813940403321
Titolo	Biomimetic robotic artificial muscles / / Kwang Jin Kim, University of Nevada, Las Vegas, USA, University of Nevada, Reno, USA, Xiaobo Tan, Michigan State University, USA, Hyouk Ryeol Choi, Sungkyunkwan University, S. Korea, David Pugal, University of Nevada, Reno, USA
Pubbl/distr/stampa	[Hackensack] N.J., : World Scientific, c2013 New Jersey : , : World Scientific, , [2013] 2013
ISBN	1-299-46224-3 981-4390-36-4
Descrizione fisica	1 online resource (xiii, 285 pages) : illustrations (some color)
Collana	Gale eBooks
Disciplina	530.4/1
Soggetti	Biomimetics
	Robots - Kinematics
	Biomimetic materials Muscles
Lingua di pubblicazione	Inglese
Formato	Materiale a stampa
Formato	Materiale a stampa Monografia
Formato Livello bibliografico	Materiale a stampa Monografia

1.

	Responsive IPMCs; 3.2 IPMCs Loaded with Multiwalled Carbon Nanotubes; 3.3 IPMCs Incorporating ZnO Thin Film; 3.4 A Self- oscillating IPMC; 3.4.1 Self-oscillating actuation of IPMC 3.4.1.1 Electrochemical oscillations on Pt electrode3.4.1.2 Electrochemical self-oscillating actuation of IPMCs; 3.4.2 Modeling the oscillating actuation; 3.4.2.1 Finite-element bending model of IPMC; 3.4.2.2 Modeling self-oscillations; 3.4.2.3 Summary; 4. A Systems Perspective on Modeling of Ionic Polymer- Metal Composites; 4.1 Introduction; 4.2 A Physics-based, Control-oriented Model; 4.2.1 Dynamics-governing PDEs; 4.2.2 Impedance and actuation models; 4.2.2.1 Impedance model; 4.2.2.2 Actuation model and its reduction; 4.2.3 Experimental model validation 5.3.2 Model scalability5.4 Robust Adaptive Control of Conjugated Polymer Actuators; 5.4.1 Design of robust adaptive controller; 5.4.1.1 Model reduction; 5.4.1.2 Robust self-tuning regulator; 5.4.2 Experimental results; 5.5 Redox Level-dependent Admittance Model; 5.5.1 Model development; 5.5.2 Experimental model validation; 5.6 Nonlinear Elasticity-based Modeling of Large Bending Deformation; 5.6.1 Nonlinear mechanical model; 5.6.2 Experimental model validation; 5.7 Nonlinear Mechanics-Motivated Torsional Actuator; 5.7.1 Nonlinear mechanical model; 5.7.2 Actuator fabrication 5.7.3 Experimental results
Sommario/riassunto	Biomimetic Robotic Artificial Muscles presents a comprehensive up-to- date overview of several types of electroactive materials with a view of using them as biomimetic artificial muscles. The purpose of the book is to provide a focused, in-depth, yet self-contained treatment of recent advances made in several promising EAP materials. In particular, ionic polymer-metal composites, conjugated polymers, and dielectric elastomers are considered. Manufacturing, physical characterization, modeling, and control of the materials are presented. Namely, the book adopts a systems perspective to integrate