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"Study of French education and republicanism as represented in
twenty-first century French literature and film"--

"French school debates of recent years, which are simultaneously
debates about the French Republic's identity and values, have



generated a spate of internationally successful literature and film on
the topic of education. While mainstream media and scholarly essays
tend to treat these works as faithful representations of classroom
reality, The Pedagogical Imagination takes a different approach. In this
study of French education and republicanism as represented in twenty-
first-century French literature and film, Leon Sachs shifts our attention
from "what" literature and film say about education to "how" they say it.
He argues that the most important literary and filmic treatments of
French education in recent years--the works of Agnes Varda, Erik
Orsenna, Abdellatif Kechiche, Francois Begaudeau--do more than
merely depict the present-day school crisis. They explore questions of
education through experiments with form. The Pedagogical Imagination
shows how such techniques engage present-day readers and viewers in
acts of interpretation that reproduce pedagogical principles of active,
experiential learning--principles at the core of late nineteenth-century
educational reform that became vehicles for the diffusion of republican
ideology. "--



