1. Record Nr.

Autore
Titolo

Pubbl/distr/stampa

ISBN

Edizione

Descrizione fisica

Disciplina
Soggetti

Lingua di pubblicazione
Formato

Livello bibliografico
Nota di bibliografia
Nota di contenuto

UNINA9910743250303321
Taraate Vaibbhav

Digital logic design using Verilog : coding and RTL synthesis / /
Vaibbhav Taraate

Singapore : , : Springer, , [2022]
©2022

981-16-3199-9
981-16-3198-0

[2nd ed.]
1 online resource (607 pages)

371.320973

Logic design - Data processing
Verilog (Computer hardware description language)

Inglese
Materiale a stampa
Monografia

Includes bibliographical references and index.

Intro -- Preface -- Acknowledgements -- Contents -- About the
Author -- 1 Introduction -- 1.1 Evolution of Logic Design -- 1.2
System and Logic Design Abstractions -- 1.2.1 Architecture Design --
1.2.2 Micro-architecture Design -- 1.2.3 RTL Design and Synthesis --
1.2.4 Switch Level Design -- 1.3 Integrated Circuit Design and
Methodologies -- 1.3.1 RTL Design -- 1.3.2 Functional Verification --
1.3.3 Synthesis -- 1.3.4 Physical Design -- 1.4 Verilog as Hardware
Description Language -- 1.5 Verilog Design Description -- 1.5.1
Structural Design -- 1.5.2 Behavior Design -- 1.5.3 Synthesizable
Design -- 1.6 Few Important Verilog Terminologies -- 1.7 Exercises --
1.8 Summary -- 2 Concept of Concurrency and Verilog Operators --
2.1 Use of Continuous Assignment to Model Design -- 2.2 Use of
always Procedural Block to Implement Combinational Design -- 2.3
Concept of Concurrency -- 2.4 Verilog Arithmetic Operators -- 2.5
Verilog Logical Operators -- 2.6 Verilog Equality and Inequality
Operators -- 2.7 Verilog Sign Operators -- 2.8 Verilog Bitwise
Operators -- 2.9 Verilog Relational Operators -- 2.10 Verilog
Concatenation and Replication Operators -- 2.11 Verilog Reduction
Operators -- 2.12 Verilog Shift Operators -- 2.13 Exercises -- 2.14
Summary -- 3 Verilog Constructs and Combinational Design-I -- 3.1
The Role of Constructs -- 3.2 Logic Gates and Synthesizable RTL --



3.2.1 NOT or Invert Logic -- 3.2.2 OR Logic -- 3.2.3 NOR Logic --
3.2.4 AND Logic -- 3.2.5 NAND Logic -- 3.2.6 Two Input XOR Logic --
3.2.7 Two Input XNOR Logic -- 3.3 Tristate Logic -- 3.4 Arithmetic
Circuits -- 3.4.1 Adder -- 3.4.1.1 Half Adder -- 3.4.1.2 Full Adder --
3.4.2 Subtractor -- 3.4.2.1 Half Subtractor -- 3.4.2.2 Full Subtractor --
3.5 Exercises -- 3.6 Summary -- 4 Verilog Constructs and
Combinational Design-Il -- 4.1 Procedural Block always @*.

4.2 Multi-bit Adders and Subtractors -- 4.2.1 Four-Bit Full Adder --
4.2.2 4-Bit Full Subtractor -- 4.2.3 4-Bit Adder and Subtractor -- 4.3
Optimization of Resources -- 4.3.1 Optimization Using Only Adders --
4.3.2 Optimization by Tweaking the Logic to Have Better Data and
Control Path -- 4.4 Procedural Block initial -- 4.5 Simulation Concepts:
Basic Testbench -- 4.6 Comparators and Parity Detectors -- 4.6.1
Binary Comparators -- 4.6.2 Parity Detector -- 4.7 Code Converters --
4.7.1 Binary to Gray Code Converter -- 4.7.2 Gray to Binary Code
Converter -- 4.8 Let Us Think About the Design from Specifications --
4.9 Exercises -- 4.10 Summary -- 5 Multiplexers as Universal Logic --
5.1 Multiplexers -- 5.2 Multiplexer as Universal logic -- 5.2.1 2:1 MUX
-- 5.3 The if...else Versus case Construct -- 5.4 The 4:1 MUX Using if...
else -- 5.5 The 4:1 MUX Using case Construct -- 5.6 The 4:1 Mux
Using 2:1 MUX -- 5.7 Let Us Design Combinational Logic Using
Multiplexers -- 5.8 Optimization Strategies Using RTL Tweaks -- 5.9
Exercises -- 5.10 Summary -- 6 Decoders and Encoders -- 6.1
Decoders -- 6.1.1 1 Line to 2 Decoder Using case construct -- 6.1.2 1
Line to 2 Decoder Having Enable Using case -- 6.1.3 2 Line to 4
Decoder with Enable Using case -- 6.1.4 2 Line to 4 Decoder with
Active Low Enable Using case -- 6.1.5 2 to 4 Decoder Using Continuous
Assignments -- 6.1.6 Decoder Using Shift Operator -- 6.1.7 Testbench
of 2:4 Decoder -- 6.1.8 4 Line to 16 Decoder Using 2:4 Decoder -- 6.2
Testbench for 4:16 Decoder -- 6.3 Encoders -- 6.3.1 Priority Encoders
-- 6.4 Testbench of 4:2 Priority encoder -- 6.5 Exercises -- 6.6
Summary -- 7 Event Queue and Design Guidelines -- 7.1 Verilog
Stratified Event Queue -- 7.2 Verilog Blocking Assignments -- 7.3
Incomplete Sensitivity List -- 7.4 Continuous Versus Procedural
Assignments -- 7.5 Combinational Loops in Design.

7.6 Unintentional Latches in the Design -- 7.7 Use of Blocking
Assignments -- 7.8 Use of if...else Versus case constructs -- 7.9
Nested Multiplexer or Priority Logic -- 7.10 Parallel Logic or Decoding
Logic -- 7.11 Priority Encoding Structure -- 7.12 Missing

default Condition in case construct -- 7.13 Nested if...else with Missing
else Condition -- 7.14 Logical Equality Versus Case Equality -- 7.14.1
Logical Equality and Logical Inequality Operators -- 7.14.2 Case
Equality and Case Inequality Operators -- 7.15 Multiple Driver
Assignments -- 7.16 Exercises -- 7.17 Summary -- 8 Basics of
Sequential Design Using Verilog -- 8.1 Sequential Logic -- 8.1.1
Positive-Level Sensitive D Latch -- 8.1.2 Negative-Level Sensitive D
Latch -- 8.2 Flip-Flop -- 8.2.1 Positive Edge-Triggered D Flip-Flop --
8.2.2 Negative Edge-Triggered D Flip-Flop -- 8.2.3 Synchronous and
Asynchronous Reset -- 8.2.3.1 D Flip-Flop Having Asynchronous Reset
-- 8.2.4 D Flip-Flop Having Synchronous Reset -- 8.2.5 Flip-Flop
Having Synchronous Load Enable and Asynchronous Reset -- 8.2.6
Flip-Flop with Synchronous Load and Synchronous Reset -- 8.3
Exercises -- 8.4 Summary -- 9 Synchronous Counter Design Using
Synthesizable Constructs -- 9.1 Synchronous Counters -- 9.1.1 Three-
Bit Up Counter -- 9.1.2 Three-Bit Down Counter -- 9.1.3 Three-Bit
Up-Down Counter -- 9.2 Gray Counters -- 9.2.1 Gray and Binary
Counter -- 9.2.2 Ring Counters -- 9.2.3 Johnson Counters -- 9.3 BCD
Up-Down Counter -- 9.4 Exercises -- 9.5 Summary -- 10 RTL Design



of Registers and Memoaries -- 10.1 Parallel Input and Parallel Output
(PIPO) Register -- 10.2 Shift Register -- 10.3 Right and Left Shift
Operation -- 10.4 Timing and Performance Evaluation -- 10.5
Asynchronous Counter Design -- 10.5.1 Ripple Counters -- 10.6 RTL
Design of Memories -- 10.7 Parameterized Read-Write Memory -- 10.8
Exercises -- 10.9 Summary.

11 Sequential Circuit Design Guidelines -- 11.1 What Happens If
Blocking Assignments Are Used to Code Sequential Logic? -- 11.1.1
Blocking Assignments and Multiple always Blocks -- 11.1.2 Multiple
Blocking Assignments Used in the Single always Block -- 11.1.3
Example Blocking Assignment -- 11.2 Non-blocking Assignments --
11.2.1 Example Non-blocking Assignments -- 11.2.2 Example Non-
blocking Assignment -- 11.2.3 Example Using Non-blocking
Assignments -- 11.3 Latch Versus Flip-Flop -- 11.3.1 D Flip-Flop --
11.3.2 Latch -- 11.4 Use of Synchronous Versus Asynchronous Reset
--11.4.1 D Flip-Flop Having Asynchronous Reset -- 11.4.2
Synchronous Reset D Flip-Flop -- 11.5 Use of if...else Versus case
constructs -- 11.6 Internally Generated Clocks -- 11.7 Guidelines for
Modeling Synchronous Designs -- 11.8 Multiple Clocks in the Same
module -- 11.9 Multi-phase Clocks in the Design -- 11.10 Guidelines
for Modeling Asynchronous Designs -- 11.11 Exercises -- 11.12
Summary -- 12 RTL Design Strategies for Complex Designs -- 12.1
ALU Design -- 12.1.1 Logic Unit Design -- 12.1.1.1 Logic Unit to Infer
Parallel Logic -- 12.1.1.2 Logic Unit Having Registered Inputs and
Outputs -- 12.1.2 Arithmetic Unit -- 12.1.3 Arithmetic and Logic Unit

-- 12.2 Functions and Tasks -- 12.2.1 Counting Number of 1's from

the Given String -- 12.2.2 RTL Design Using function to Count Number
of 1'S -- 12.3 Synthesis Result of RTL Using function -- 12.4 Synthesis
Result of RTL Using task -- 12.5 Exercises -- 12.6 Summary -- 13 RTL
Tweaks and Performance Improvement Techniques -- 13.1 Arithmetic
Resource Sharing -- 13.1.1 RTL Design Using Resource Sharing to Have
Area Optimization -- 13.2 Gated Clocks and Dynamic Power Reduction
-- 13.3 Use of Pipelining in Design -- 13.3.1 Design Without Pipelining
-- 13.3.2 Speed Improvement Using Register Balancing or Pipelining.
13.4 Counter Design and Duty Cycle Control -- 13.5 MOD-3 Counter
RTL Design to Have 50% Duty Cycle -- 13.6 Exercise -- 13.7 Summary
-- 14 Finite State Machines Using Verilog -- 14.1 Moore Versus Mealy
Machines -- 14.1.1 Level to Pulse Converter -- 14.2 FSM Encoding
Styles -- 14.2.1 Binary Encoding -- 14.2.1.1 Two-Bit Binary Counter
FSM -- 14.2.2 Gray Encoding -- 14.2.2.1 Two-Bit Gray Counter FSM --
14.3 One-Hot Encoding -- 14.4 Sequence Detectors Using FSMs --
14.4.1 Mealy Sequence Detector Using Two always Procedural Blocks --
14.4.2 Mealy Machine: Sequence Detector to Detect 101 Overlapping
Sequence -- 14.5 Improving the Design Performance for FSMs -- 14.6
Exercises -- 14.7 Summary -- 15 Non-synthesizable Verilog
Constructs and Testbenches -- 15.1 Intra-delay and Inter-delay
Assignments -- 15.1.1 Simulation for Blocking Assignments -- 15.1.2
Simulation of Non-blocking Assignments -- 15.2 The always and initial
Procedural Block -- 15.2.1 Blocking Assignments with Inter-
assignment Delays -- 15.2.2 Blocking Assignments with Intra-
assignment Delays -- 15.2.3 Non-blocking Assignments with Inter-
assignment Delays -- 15.2.4 Non-blocking Assignments with Intra-
assignment Delays -- 15.3 Role of Testbenches -- 15.4 Multiple
Assignments Within the begin-end -- 15.5 Multiple Assignments

Within the fork-join -- 15.6 Display Tasks -- 15.7 Exercises -- 15.8
Summary -- 16 FPGA Architecture and Design Flow -- 16.1
Introduction to PLD -- 16.2 FPGA as Programmable ASIC -- 16.2.1
SRAM Based FPGA -- 16.2.2 Flash Based FPGA -- 16.2.3 Antifuse



2. Record Nr.
Autore
Titolo

Pubbl/distr/stampa

ISBN

Descrizione fisica

Classificazione

Disciplina
Soggetti

Lingua di pubblicazione
Formato

Livello bibliografico
Note generali

Nota di bibliografia
Nota di contenuto

Sommario/riassunto

FPGAS -- 16.2.4 Important FPGA Blocks -- 16.3 FPGA Design Flow --
16.3.1 Design Entry -- 16.3.2 Design Simulation and Synthesis --
16.3.3 Design Implementation -- 16.3.4 Device Programming -- 16.4
Logic Realization Using FPGA -- 16.4.1 Configurable Logic Block --
16.4.2 Input Output Block (IOB) -- 16.4.3 Block RAM.

16.4.4 Digital Clock Manager (DCM) Block.

UNINA9910813326403321

Sachs Leon <1967->

The pedagogical imagination : the republican legacy in twenty-first-
century French literature and film / / Leon Sachs

Lincoln, [Nebraska] ; ; London, England : , : University of Nebraska
Press, , 2014
©2014

0-8032-5512-8
0-8032-5511-X

1 online resource (401 p.)
PER004030EDU011000LIT004150

840.9/0092

French literature - 21st century - History and criticism
Education in literature

Education in motion pictures

Republicanism in literature

Motion pictures - France - History - 21st century

Inglese

Materiale a stampa

Monografia

Description based upon print version of record.
Includes bibliographical references and index.

Cover; Title Page; Copyright Page; Contents; List of lllustrations;
Acknowledgments; Introduction; 1. A New Language of Learning; 2.
Visualizing Literacy; 3. Teaching Suspicion; 4. A Classic Dodge; 5.
Writing on Walls; Conclusion; Notes; Bibliography; Index; About the
Author

"Study of French education and republicanism as represented in
twenty-first century French literature and film"--

"French school debates of recent years, which are simultaneously
debates about the French Republic's identity and values, have



generated a spate of internationally successful literature and film on
the topic of education. While mainstream media and scholarly essays
tend to treat these works as faithful representations of classroom
reality, The Pedagogical Imagination takes a different approach. In this
study of French education and republicanism as represented in twenty-
first-century French literature and film, Leon Sachs shifts our attention
from "what" literature and film say about education to "how" they say it.
He argues that the most important literary and filmic treatments of
French education in recent years--the works of Agnes Varda, Erik
Orsenna, Abdellatif Kechiche, Francois Begaudeau--do more than
merely depict the present-day school crisis. They explore questions of
education through experiments with form. The Pedagogical Imagination
shows how such techniques engage present-day readers and viewers in
acts of interpretation that reproduce pedagogical principles of active,
experiential learning--principles at the core of late nineteenth-century
educational reform that became vehicles for the diffusion of republican
ideology. "--



