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Throughout most of this book, non-Euclidean geometries in spaces of
two or three dimensions are treated as specializations of real projective
geometry in terms of a simple set of axioms concerning points, lines,
planes, incidence, order and continuity, with no mention of the
measurement of distances or angles. This synthetic development is
followed by the introduction of homogeneous coordinates, beginning
with Von Staudt's idea of regarding points as entities that can be added
or multiplied. Tranformations that preserve incidence are called
collineations. They lead in a natural way to isometries or ‘congruent
transformations'. Following a recommendation by Bertrand Russell,
continuity is described in terms of order. Elliptic and hyperbolic
geometries are derived from real projective geometry by specializing an
elliptic or hyperbolic polarity which transforms points into lines (in two
dimensions) or planes (in three dimensions) and vice versa.



