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This book gives a modern differential geometric treatment of linearly
nonholonomically constrained systems. It discusses in detail what is
meant by symmetry of such a system and gives a general theory of how
to reduce such a symmetry using the concept of a differential space
and the almost Poisson bracket structure of its algebra of smooth
functions. The above theory is applied to the concrete example of
Caratheodory's sleigh and the convex rolling rigid body. The qualitative
behavior of the motion of the rolling disk is treated exhaustively and in
detail. In particular, it classifies all mot


