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10. Four notable roads to quantum dynamics

White noise analysis is an advanced stochastic calculus that has
developed extensively since three decades ago. It has two main
characteristics. One is the notion of generalized white noise
functionals, the introduction of which is oriented by the line of
advanced analysis, and they have made much contribution to the fields
in science enormously. The other characteristic is that the white noise
analysis has an aspect of infinite dimensional harmonic analysis arising
from the infinite dimensional rotation group. With the help of this
rotation group, the white noise analysis has explored new are



