Record Nr. Autore Titolo	UNINA9910806871303321 Chin Wilson C Measurement while drilling (MWD) signal analysis, optimization and design / / by Wilson C. Chin [and five others] ; cover design by Kris Hackerott
Pubbl/distr/stampa	Hoboken, New Jersey : , : Scrivener Publishing : , : Wiley, , 2014 ©2014
ISBN	1-118-83169-1 1-118-83172-1 1-118-83170-5
Descrizione fisica	1 online resource (382 p.)
Disciplina	622/.33810287
Soggetti	Oil well logging, Electric Oil well drilling Orientation - Measurement Wells - Fluid dynamics Flow meters
Lingua di pubblicazione	Inglese
Lingua di pubblicazione Formato	Materiale a stampa
	Materiale a stampa Monografia
Formato	Materiale a stampa
Formato Livello bibliografico	Materiale a stampa Monografia

1.

	continuous wave telemetry; 2.2.4 Drillbit as a reflector; 2.2.5 Source modeling subtleties and errors; 2.2.6 Flowloop and field test subtleties; 2.2.7 Wind tunnel testing comments 2.3 Downhole Wave Propagation Subtleties 2.3.1 Three distinct physical problems; 2.3.2 Downhole source problem; 2.4 Six-Segment Downhole Waveguide Model; 2.4.1 Nomenclature; 2.4.2 Mathematical formulation; 2.4.2.1 Dipole source, drill collar modeling; 2.4.2.2 Harmonic analysis; 2.4.2.3 Governing partial differential equations; 2.4.2.4 Matching conditions at impedance junctions; 2.4.2.5 Matrix formulation; 2.4.2.6 Matrix inversion; 2.4.2.7 Final data analysis; 2.5 An Example: Optimizing Pulser Signal Strength; 2.5.1 Problem definition and results; 2.5.2 User interface 2.5.3 Constructive interference at high frequencies 2.6 Additional Engineering Conclusions; 2.7 References; 3 Harmonic Analysis: Elementary Pipe and Collar Models; 3.1 Constant area drillpipe wave models; 3.1.1 Case (a), infinite system, both directions; 3.1.2 Case (b), drillbit as a solid reflector; 3.1.3 Case (c), drillbit as open-ended reflector; 3.1.4 Case (d), "finite-finite" waveguide of length 2L; 3.1.5 Physical Interpretation; 3.2.2 Variable area collar-pipe wave models; 3.2.1 Mathematical formulatior; 3.2.2 Example calculations; 3.3 References 4 Transient Constant Area Surface and Downhole Wave Models 4.1 Method 4-1. Upgoing wave reflection at solid boundary, single transducer deconvolution using delay equation, no mud pump noise; 4.1.1 Physical problem; 4.1.2 Theory; 4.1.3 Run 1. Wide signal - low data rate; 4.1.4 Run 2. Narrow pulse width - high data rate; 4.1.5 Run 3. Phase-shift keying or PSK; 4.1.6 Runs 4,and 5. Phase-shift keying or PSK, very high data rate; 4.2.0 Method 4-2. Upgoing wave reflection at solid boundary, single transducer deconvolution using delay equation, with mud pump noise; 4.2.1 Physical Problem 4.2.2 Software note
Sommario/riassunto	Trade magazines and review articles describe MWD in casual terms, e. g., positive versus negative pulsers, continuous wave systems, drilling channel noise and attenuation, in very simple terms absent of technical rigor. However, few truly scientific discussions are available on existing methods, let alone the advances necessary for high-data-rate telemetry. Without a strong foundation building on solid acoustic principles, rigorous mathematics, and of course, fast, inexpensive and efficient testing of mechanical designs, low data rates will impose unacceptable quality issues to real-time