
UNINA99108001863033211. Record Nr.

Titolo Software essentials : design and construction / / Adair Dingle, Seattle
University, Washington, USA

Pubbl/distr/stampa Boca Raton : , : Taylor & Francis, , [2014]
©2014

ISBN 0-429-06344-X
1-4398-4120-9

Descrizione fisica 1 online resource (432 p.)

Collana Chapman & Hall/CRC Innovations in Software Engineering and Software
Development

Classificazione COM051230COM051300

Disciplina 005.1/2

Soggetti Software architecture
Computer software - Development

Lingua di pubblicazione Inglese

Formato

Edizione [1st edition]

Livello bibliografico

Note generali A Chapman and Hall book.

Nota di bibliografia

Nota di contenuto

Includes bibliographical references.

Sommario/riassunto

Front Cover; Contents; Preface; Acknowledgments; Detailed Book
Outline; Chapter 1: Software Complexity and Modeling; Chapter 2:
Software Development; Chapter 3: Functionality; Chapter 4: Memory;
Chapter 5: Design and Documentation; Chapter 6: Structural Design;
Chapter 7: Behavioral Design; Chapter 8: Design Alternatives and
Perspectives; Chapter 9: Software Correctness; Chapter 10: Software
Longevity; Glossary: Definitions and Conceptual Details; References;
Appendix A: Memory and the Pointer Construct; Appendix B: Heap
Memory and Aliases; Appendix C:Function Pointers
Appendix D: Operator OverloadingBack Cover

Preface Why this book? Why should you read this book? The short
answer is to study software design from a structured but hands-on
perspective and to understand different models of control flow,
memory, dynamic behavior, extensibility, et cetera Software complexity
and the growing impact of legacy systems motivate a renewed interest
in software design and modeling. We emphasize design (and
construction) in this text, using and contrasting C# and C++. Many CS
texts are 'learn to' books that focus on one programming language or
tool. When perspective is so limited to a specific tool or programming

Autore Dingle Adair

Materiale a stampa

Monografia



language, high-level concepts are often slighted. Students may gain
exposure to an idea via a 'cookbook' implementation and thus fail to
truly absorb essential concepts. Students and/or practitioners can
understand and apply design principles more readily when such
concepts are explicitly defined and illustrated. Design, not just syntax,
must be stressed. The progression of programming languages,
software process methodologies and development tools continues to
support abstraction: software developers should exploit this
abstraction and solve problems (design) without being tied to a
particular syntax or tool. Software design and modeling are neither new
nor trendy topics. Software development often focuses on immediate
effect: implement, test (minimally) and deploy. Yet, the complexity,
scale and longevity of modern software require an intricate
understanding of a software system as a whole -- components and
relationships, user interfaces, persistent data, et cetera To
accommodate existing use while preserving longevity, a software
developer must look forward for extensibility and backward for
compatibility. Hence, software developers must understand software
design. --


