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Many books have been written about software testing, but most of
them discuss the general framework of testing from a traditional
perspective. Unfortunately, traditional test design techniques are often
ineffective and unreliable for revealing the various kinds of faults that
may occur. This book introduces three new software testing
techniques: Two-Phase Model-Based Testing, the Action-State Testing,
and the General Predicate Testing, all of which work best when applied
with efficient fault revealing capabilities. You’ll start with a short recap
of software testing, focusing on why risk analysis is obligatory, how to
classify bugs practically, and how fault-based testing can be used for
improving test design. You’ll then see how action-state testing merges
the benefits of state transition testing and use case testing into a
unified approach. Moving on you’ll look at general predicate testing
and how it serves as an extension of boundary valueanalysis,
encompassing more complex predicates. Two-phase model-based
testing represents an advanced approach where the model does not
necessarily need to be machine-readable; human readability suffices.
The first phase involves a high-level model from which abstract tests
are generated. Upon manual execution of these tests, the test code is
generated. Rather than calculating output values, they are merely
checked for conformity. The last part of this book contains a chapter on
how developers and testers can help each other and work as a
collaborative team. You will: Apply efficient test design techniques for
detecting domain faults Work with modeling techniques that combine
all the advantages of state transition testing and use case testing Grasp
the two-phase model-based testing technique Use test design
efficiently to find almost all the bugs in an application.


