
UNINA99107995001033211. Record Nr.

Titolo Modern Software Testing Techniques : A Practical Guide for Developers
and Testers / / by István Forgács, Attila Kovács

Pubbl/distr/stampa Berkeley, CA : , : Apress : , : Imprint : Apress, , 2024

ISBN 9781484298930
1484298934

Descrizione fisica 1 online resource (XVIII, 266 p. 53 illus.)

Disciplina 005.14

Soggetti Computer programs - Testing
Software engineering - Management
Software Testing
Software Management

Lingua di pubblicazione Inglese

Formato

Edizione [1st ed. 2024.]

Livello bibliografico

Nota di bibliografia

Nota di contenuto

Includes bibliographical references and index.

Intro -- Table of Contents -- About the Authors -- About the Technical
Reviewer -- Acknowledgments -- Introduction -- Abbreviations --
Chapter 1: Software Testing Basics -- Bugs and Other Software Quality
Destroyers -- Lifetime of Bugs: From Cradle to Coffin -- Pesticides
Against Bugs -- Classification of Bugs -- Software Testing -- Testing
Life Cycle -- Test Planning -- Test Monitoring and Control -- Test
Analysis -- Test Design -- Test Implementation and Execution -- Test
Closure -- Fault-Based Testing -- Requirements and Testing --
Testing Principles -- 1. Testing is Possible -- 2. Early and Balanced
Testing -- 3. Testing is Independent and Context Dependent -- 4.
Continuity of Testing -- 5. Defect Clustering -- Two Misconceptions --
Comparison of the Existing and Our Principles -- Summary -- Chapter
2: Test Design Automation by Model-Based Testing -- Higher-Order
Bugs -- Model-Based Testing -- One-Phase (Traditional) Model-Based
Testing -- Two-Phase Model-Based Testing -- Stateless Modeling --
Use Case Testing -- Stateful Modeling -- FSM and EFSM-Based
Modeling -- How to Select States? -- Model Maintenance -- How
to Create a Stateful Model - Example -- Efficiency, Advantages,
and Disadvantages -- Stateless and Stateful Together - Action-State

Autore Forgacs Istvan

Materiale a stampa

Monografia



Sommario/riassunto

Testing -- The Action-State Model -- Test Selection Criteria for Action-
State Testing -- Creating Action-State Model -- Comparison
with Stateful Modeling -- How a Real Bug Can Be Detected? --
Summary -- Chapter 3: Domain Testing -- Equivalence Partitioning --
Obtaining Partitions Without Partitioning -- Example: Price Calculation
-- Equivalence Partitioning and Combinatorial Testing -- Domain
Analysis -- Test Selection for Atomic Predicates -- Selecting Tests
for Predicates Comprising Two Atomic Components -- Closed Borders
-- One Open and One Closed Border -- Two Open Borders -- Other
Cases -- Summary.
Test Selection for General Compound Predicates -- Test Selection
for Multidimensional Ranges -- Optimized Domain Testing (ODT) --
Boundary-Based Approach -- Example: Online Bookstore -- Rule-
Based Approach -- Example: Online Bookstore Revisited -- Example:
Paid Vacation Days -- Safety-Critical Aspects of ODT -- How ODT Can
Help Developers -- ODT at Different Abstraction Levels -- Black-Box
Solution -- Gray-Box Solution -- White-Box Solution -- Comparing
ODT with Traditional Techniques -- Applying ODT with Other
Techniques -- Summary -- Chapter 4: Developers and Testers Should
Constitute a Successful Team -- How Developers Can Help Testers --
How Testers Can Help Developers -- How to Find Tricky a Tricky Bug
-- Flaky Test -- Developer - Tester Synergies -- Summary -- Chapter
5: Conclusion -- Appendixes -- Appendix I: Java Code for Quicksort --
Appendix II: Test Cases for the Stateless Model of Car Rental Example
-- Appendix III: Test Cases for Stateful Model of Car Rental Example --
Appendix IV: Test Cases for Action-State Model of Car Rental Example
-- Appendix V: ODT Tool Description -- Glossary -- References --
Index.
Many books have been written about software testing, but most of
them discuss the general framework of testing from a traditional
perspective. Unfortunately, traditional test design techniques are often
ineffective and unreliable for revealing the various kinds of faults that
may occur. This book introduces three new software testing
techniques: Two-Phase Model-Based Testing, the Action-State Testing,
and the General Predicate Testing, all of which work best when applied
with efficient fault revealing capabilities. You’ll start with a short recap
of software testing, focusing on why risk analysis is obligatory, how to
classify bugs practically, and how fault-based testing can be used for
improving test design. You’ll then see how action-state testing merges
the benefits of state transition testing and use case testing into a
unified approach. Moving on you’ll look at general predicate testing
and how it serves as an extension of boundary valueanalysis,
encompassing more complex predicates. Two-phase model-based
testing represents an advanced approach where the model does not
necessarily need to be machine-readable; human readability suffices.
The first phase involves a high-level model from which abstract tests
are generated. Upon manual execution of these tests, the test code is
generated. Rather than calculating output values, they are merely
checked for conformity. The last part of this book contains a chapter on
how developers and testers can help each other and work as a
collaborative team. You will: Apply efficient test design techniques for
detecting domain faults Work with modeling techniques that combine
all the advantages of state transition testing and use case testing Grasp
the two-phase model-based testing technique Use test design
efficiently to find almost all the bugs in an application.


