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Over the field of real numbers, analytic geometry has long been in deep
interaction with algebraic geometry, bringing the latter subject many of
its topological insights. In recent decades, model theory has joined this
work through the theory of o-minimality, providing finiteness and
uniformity statements and new structural tools. For non-archimedean
fields, such as the p-adics, the Berkovich analytification provides a
connected topology with many thoroughgoing analogies to the real
topology on the set of complex points, and it has become an important
tool in algebraic dynamics and many other areas of geometry. This
book lays down model-theoretic foundations for non-archimedean
geometry. The methods combine o-minimality and stability theory.
Definable types play a central role, serving first to define the notion of

a point and then properties such as definable compactness. Beyond the
foundations, the main theorem constructs a deformation retraction



from the full non-archimedean space of an algebraic variety to a
rational polytope. This generalizes previous results of V. Berkovich,
who used resolution of singularities methods. No previous knowledge
of non-archimedean geometry is assumed. Model-theoretic
prerequisites are reviewed in the first sections.



