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The curve, explicit divisors, and relations -- Descent calculations --
Minimal regular model, local invariants, and domination by a product of
curves -- Heights and the visible subgroup -- The L-function and the
BSD conjecture -- Analysis of J[p] and NS(Xd)tor -- Index of the visible
subgroup and the Tate-Shafarevich group -- Monodromy of -torsion
and decomposition of the Jacobian.

"We study the Jacobian J of the smooth projective curve C of genus r-1
with affine model yr = xr-1(x+ 1)(x + t) over the function field Fp(t),

when p is prime and r [greater than or equal to] 2 is an integer prime to
p. When g is a power of p and d is a positive integer, we compute the
L-function of J over Fq(tl/d) and show that the Birch and Swinnerton-
Dyer conjecture holds for J over Fq(t1/d). When d is divisible by r and of
the form p[nu] + 1, and Kd := Fp([mu]d, t1/d), we write down explicit
points in J(Kd), show that they generate a subgroup V of rank (r-1)(d-2)
whose index in J(Kd) is finite and a power of p, and show that the order
of the Tate-Shafarevich group of J over Kd is [J(Kd) : V ]2. When r > 2,



we prove that the "new" part of J is isogenous over Fp(t) to the square
of a simple abelian variety of dimension [phi](r)/2 with endomorphism
algebra Z[[mu]r]+. For a prime with pr, we prove that J[J(L) = {0} for any
abelian extension L of Fp(t)"--



