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A theory is the more impressive, the simpler are its premises, the more
distinct are the things it connects, and the broader is its range of
applicability. Albert Einstein There are two different ways of teaching
mathematics, namely, (i) the systematic way, and (ii) the application-
oriented way. More precisely, by (i), | mean a systematic presentation of
the material governed by the desire for mathematical perfection and
completeness of the results. In contrast to (i), approach (ii) starts out
from the question "What are the most important applications?" and then
tries to answer this question as quickly as possible. Here, one walks
directly on the main road and does not wander into all the nice and
interesting side roads. The present book is based on the second
approach. It is addressed to undergraduate and beginning graduate



students of mathematics, physics, and engineering who want to learn
how functional analysis elegantly solves mathematical problems that
are related to our real world and that have played an important role in
the history of mathematics. The reader should sense that the theory is
being developed, not simply for its own sake, but for the effective
solution of concrete problems. viii Preface This introduction to
functional analysis is divided into the following two parts: Part I
Applications to mathematical physics (the present AMS Vol. 108); Part
II: Main principles and their applications (AMS Vol. 109).



