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This is the third version of a book on differential manifolds. The first
version appeared in 1962, and was written at the very beginning of a
period of great expansion of the subject. At the time, I found no
satisfactory book for the foundations of the subject, for multiple
reasons. I expanded the book in 1971, and I expand it still further
today. Specifically, I have added three chapters on Riemannian and
pseudo Riemannian geometry, that is, covariant derivatives, curvature,
and some applications up to the Hopf-Rinow and Hadamard-Cartan
theorems, as well as some calculus of variations and applications to
volume forms. I have rewritten the sections on sprays, and I have given
more examples of the use of Stokes' theorem. I have also given many
more references to the literature, all of this to broaden the perspective
of the book, which I hope can be used among things for a general
course leading into many directions. The present book still meets the
old needs, but fulfills new ones. At the most basic level, the book gives
an introduction to the basic concepts which are used in differential
topology, differential geometry, and differential equations. In
differential topology, one studies for instance homotopy classes of
maps and the possibility of finding suitable differentiable maps in them
(immersions, embeddings, isomorphisms, etc.).


