Record Nr.	UNINA9910789216703321
Autore	Clocksin William F
Titolo	Clause and Effect [[electronic resource]] : Prolog Programming for the Working Programmer / / by William F. Clocksin
Pubbl/distr/stampa	Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 1997
ISBN	3-642-58274-5
Edizione	[1st ed. 1997.]
Descrizione fisica	1 online resource (IX, 143 p.)
Disciplina	005.13/3
Soggetti	Computer programming
	Software engineering
	Programming languages (Electronic computers)
	Artificial Intelligence Programming Techniques
	Software Engineering
	Programming Languages, Compilers, Interpreters
	Artificial Intelligence
Lingua di pubblicazione	Inglese
Formato	Materiale a stampa
Livello bibliografico	Monografia
Note generali	Bibliographic Level Mode of Issuance: Monograph
Nota di bibliografia	Includes bibliographical references at the end of each chapters and index.

1.

	Case Study: Term Rewriting 6.1 Symbolic Differentiation 6.2 Matrix Products by Symbolic Algebra 6.3 The Simplifier 7. Case Study: Manipulation of Combinational Circuits 7.1 Representing Circuits 7.2 Simulation of Circuits 7.3 Sums and Products 7.4 Simplifying SOP Expressions 7.5 Alternative Representation 8. Case Study: Clocked Sequential Circuits 8.1 Divide-by-Two Pulse Divider 8.2 Sequential Parity Checker 8.3 Four-Stage Shift Register 8.4 Gray Code Counter 8.5 Specification of Cascaded Components 9. Case Study: A Compiler forThree Model Computers 9.1 The Register Machine 9.2 The Single-Accumulator Machine 9.3 The Stack Machine 9.4 Optimisation: Preprocessing the Syntax Tree 9.5 Peephole Optimisation 10. Case Study: The Fast Fourier Transform in Prolog 10.1 Introduction 10.2 Notation for Polynomials 10.3 The DFT 10.4 Example: 8-point DFT 10.5 Naive Implementation of the DFT 10.6 From DFT to FFT 10.7 Merging Common Subexpressions 10.8 The Graph Generator 10.9 Example Run: 8-point FFT 10.10 Bibliographic Notes 11. Case Study: Higher-Order Functional Programming 11.1 Introduction 11.2 A Notation for Functions 11.3 The Evaluator 11.4 Using Higher-Order Functions 11.5 Discussion 11.6 Bibliographic Notes.
Sommario/riassunto	This book is for people who have done some programming, either in Prolog or in a language other than Prolog, and who can find their way around a reference manual. The emphasis of this book is on a simplified and disciplined methodology for discerning the mathematical structures related to a problem, and then turning these structures into Prolog programs. This book is therefore not concerned about the particular features of the language nor about Prolog programming skills or techniques in general. A relatively pure subset of Prolog is used, which includes the 'cut', but no input/output, no assert/retract, no syntactic extensions such as if- then-else and grammar rules, and hardly any built-in predicates apart from arithmetic operations. I trust that practitioners of Prolog program- ming who have a particular interest in the finer details of syntactic style and language features will understand my purposes in not discussing these matters. The presentation, which I believe is novel for a Prolog programming text, is in terms of an outline of basic concepts interleaved with worksheets. The idea is that worksheets are rather like musical exercises. Carefully graduated in scope, each worksheet introduces only a limited number of new ideas, and gives some guidance for practising them. The principles introduced in the worksheets are then applied to extended examples in the form of case studies.