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In Greek geometry, there is an arithmetic of magnitudes in which, in
terms of numbers, only integers are involved. This theory of measure is
limited to exact measure. Operations on magnitudes cannot be actually
numerically calculated, except if those magnitudes are exactly
measured by a certain unit. The theory of proportions does not have
access to such operations. It cannot be seen as an "arithmetic" of
ratios. Even if Euclidean geometry is done in a highly theoretical
context, its axioms are essentially semantic. This is contrary to
Mahoney's second characteristic. This cannot be said of the theory of
proportions, which is less semantic. Only synthetic proofs are
considered rigorous in Greek geometry. Arithmetic reasoning is also
synthetic, going from the known to the unknown. Finally, analysis is an
approach to geometrical problems that has some algebraic
characteristics and involves a method for solving problems that is
different from the arithmetical approach. 3. GEOMETRIC PROOFS OF
ALGEBRAIC RULES Until the second half of the 19th century, Euclid's
Elements was considered a model of a mathematical theory. This may
be one reason why geometry was used by algebraists as a tool to
demonstrate the accuracy of rules otherwise given as numerical
algorithms. It may also be that geometry was one way to represent
general reasoning without involving specific magnitudes. To go a bit
deeper into this, here are three geometric proofs of algebraic rules, the
frrst by Al-Khwarizmi, the other two by Cardano.


