
UNINA99107880705033211. Record Nr.

Titolo Refactoring for software design smells : managing technical debt / /
Girish Suryanarayana, Ganesh Samarthyam, Tushar Sharma

Pubbl/distr/stampa Waltham, Massachusetts ; : , : Morgan Kaufmann, , 2015
©2015

ISBN 0-12-801646-9

Descrizione fisica 1 online resource (259 p.)

Disciplina 005.1/6

Soggetti Software refactoring
Software failures

Lingua di pubblicazione Inglese

Formato

Edizione [1st edition]

Livello bibliografico

Note generali Description based upon print version of record.

Nota di bibliografia

Nota di contenuto

Includes bibliographical references and index.

FrontCover; Refactoring forSoftware DesignSmells; Copyright;
Dedication; Contents; Foreword by Grady Booch; Foreword by Dr.
Stephane Ducasse; Preface; WHAT IS THIS BOOK ABOUT?; WHAT DOES
THIS BOOK COVER?; WHO SHOULD READ THIS BOOK?; WHAT ARE THE
PREREQUISITES FOR READING THIS BOOK?; HOW TO READ THIS BOOK?;
WHERE CAN I FIND MORE INFORMATION?; WHY DID WE WRITE THIS
BOOK?; Acknowledgments; Chapter 1 - Technical Debt; 1.1 WHAT IS
TECHNICAL DEBT?; 1.2 WHAT CONSTITUTES TECHNICAL DEBT?; 1.3
WHAT IS THE IMPACT OF TECHNICAL DEBT?; 1.4 WHAT CAUSES
TECHNICAL DEBT?; 1.5 HOW TO MANAGE TECHNICAL DEBT?
Chapter 2 - Design Smells2.1 WHY CARE ABOUT SMELLS?; 2.2 WHAT
CAUSES SMELLS?; 2.3 HOW TO ADDRESS SMELLS?; 2.4 WHAT SMELLS
ARE COVERED IN THIS BOOK?; 2.5 A CLASSIFICATION OF DESIGN
SMELLS; Chapter 3 - Abstraction Smells; 3.1 MISSING ABSTRACTION;
3.2 IMPERATIVE ABSTRACTION; 3.3 INCOMPLETE ABSTRACTION; 3.4
MULTIFACETED ABSTRACTION; 3.5 UNNECESSARY ABSTRACTION; 3.6
UNUTILIZED ABSTRACTION; 3.7 DUPLICATE ABSTRACTION; Chapter 4 -
Encapsulation Smells; 4.1 DEFICIENT ENCAPSULATION; 4.2 LEAKY
ENCAPSULATION; 4.3 MISSING ENCAPSULATION; 4.4 UNEXPLOITED
ENCAPSULATION; Chapter 5 - Modularization Smells
5.1 BROKEN MODULARIZATION5.2 INSUFFICIENT MODULARIZATION; 5.3
CYCLICALLY-DEPENDENT MODULARIZATION; 5.4 HUB-LIKE

Autore Suryanarayana Girish

Materiale a stampa

Monografia



Sommario/riassunto

MODULARIZATION; Chapter 6 - Hierarchy Smells; 6.1 MISSING
HIERARCHY; 6.2 UNNECESSARY HIERARCHY; 6.3 UNFACTORED
HIERARCHY; 6.4 WIDE HIERARCHY; 6.5 SPECULATIVE HIERARCHY; 6.6
DEEP HIERARCHY; 6.7 REBELLIOUS HIERARCHY; 6.8 BROKEN HIERARCHY;
6.9 MULTIPATH HIERARCHY; 6.10 CYCLIC HIERARCHY; Chapter 7 - The
Smell Ecosystem; 7.1 THE ROLE OF CONTEXT; 7.2 INTERPLAY OF
SMELLS; Chapter 8 - Repaying Technical Debt in Practice; 8.1 THE
TOOLS; 8.2 THE PROCESS; 8.3 THE PEOPLE
Appendix A - Software Design PrinciplesA.1 ABSTRACTION; A.2
ACYCLIC DEPENDENCIES PRINCIPLE; A.3 DON'T REPEAT YOURSELF
PRINCIPLE; A.4 ENCAPSULATION; A.5 INFORMATION HIDING PRINCIPLE;
A.6 KEEP IT SIMPLE SILLY; A.7 LISKOV'S SUBSTITUTION PRINCIPLE; A.8
HIERARCHY; A.9 MODULARIZATION; A.10 OPEN/CLOSE PRINCIPLE; A.11
SINGLE RESPONSIBILITY PRINCIPLE; A.12 VARIATION ENCAPSULATION
PRINCIPLE; Appendix B - Tools for Repaying Technical Debt; Appendix
C - Notations for Figures; Appendix D - Suggested Reading; D.1
ESSENTIALS; D.2 REFACTORING AND REENGINEERING; D.3 PATTERNS
AND ANTI-PATTERNS
D.4 TECHNICAL DEBTBibliography; Index

Awareness of design smells - indicators of common design problems -
helps developers or software engineers understand mistakes made
while designing, what design principles were overlooked or misapplied,
and what principles need to be applied properly to address those
smells through refactoring. Developers and software engineers may
""know"" principles and patterns, but are not aware of the ""smells""
that exist in their design because of wrong or mis-application of
principles or patterns. These smells tend to contribute heavily to
technical debt - further time owed to fix projects thought to b


