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Awareness of design smells - indicators of common design problems -
helps developers or software engineers understand mistakes made
while designing, what design principles were overlooked or misapplied,
and what principles need to be applied properly to address those
smells through refactoring. Developers and software engineers may
""know"" principles and patterns, but are not aware of the ""smells""
that exist in their design because of wrong or mis-application of
principles or patterns. These smells tend to contribute heavily to
technical debt - further time owed to fix projects thought to b


