1. Record Nr.
Autore
Titolo

Pubbl/distr/stampa

ISBN

Edizione
Descrizione fisica

Altri autori (Persone)

Disciplina

Soggetti

Lingua di pubblicazione
Formato

Livello bibliografico
Note generali

Nota di bibliografia
Nota di contenuto

UNINA9910787603303321
Dang Bruce

Practical reverse engineering : x86, x64, ARM, Windows Kernel,
reversing tools, and obfuscation / / Bruce Dang, Alexandre Gazet, Elias
Bachaalany ; with contributions from Sebastien Josse

Indianapolis, IN :, : John Wiley and Sons, , [2014]

©2014

1-118-78739-0
1-118-78725-0

[1st edition]
1 online resource (383 p.)

GazetAlexandre
BachaalanyElias
JosseSebastien

005.8
Reverse engineering

Inglese

Materiale a stampa

Monografia

Description based upon print version of record.
Includes bibliographical references and index.

Cover; Title Page; Copyright; Contents; Chapter 1 x86 and x64;
Register Set and Data Types; Instruction Set; Syntax; Data Movement;
Exercise; Arithmetic Operations; Stack Operations and Function
Invocation; Exercises; Control Flow; System Mechanism; Address
Translation; Interrupts and Exceptions; Walk-Through; Exercises; x64;
Register Set and Data Types; Data Movement; Canonical Address;
Function Invocation; Exercises; Chapter 2 ARM; Basic Features; Data
Types and Registers; System-Level Controls and Settings; Introduction
to the Instruction Set; Loading and Storing Data; LDR and STR

Other Usage for LDRLDM and STM; PUSH and POP; Functions and
Function Invocation; Arithmetic Operations; Branching and Conditional
Execution; Thumb State; Switch-Case; Miscellaneous; Just-in-Time and
Self-Modifying Code; Synchronization Primitives; System Services and
Mechanisms; Instructions; Walk-Through; Next Steps; Exercises;
Chapter 3 The Windows Kernel; Windows Fundamentals; Memory
Layout; Processor Initialization; System Calls; Interrupt Request Level;
Pool Memory; Memory Descriptor Lists; Processes and Threads;
Execution Context; Kernel Synchronization Primitives; Lists



Sommario/riassunto

Implementation Details Walk-Through; Exercises; Asynchronous and
Ad-Hoc Execution; System Threads; Work Items; Asynchronous
Procedure Calls; Deferred Procedure Calls; Timers; Process and Thread
Callbacks; Completion Routines; I/O Request Packets; Structure of a
Driver; Entry Points; Driver and Device Objects; IRP Handling; A
Common Mechanism for User-Kernel Communication; Miscellaneous
System Mechanisms; Walk-Throughs; An x86 Rootkit; An x64 Rootkit;
Next Steps; Exercises; Building Confidence and Solidifying Your
Knowledge; Investigating and Extending Your Knowledge

Analysis of Real-Life Drivers Chapter 4 Debugging and Automation;

The Debugging Tools and Basic Commands; Setting the Symbol Path;
Debugger Windows; Evaluating Expressions; Process Control and Debut
Events; Registers, Memory, and Symbols; Breakpoints; Inspecting
Processes and Modules; Miscellaneous Commands; Scripting with the
Debugging Tools; Pseudo-Registers; Aliases; Language; Script Files;
Using Scripts Like Functions; Example Debug Scripts; Using the SDK;
Concepts; Writing Debugging Tools Extensions; Useful Extensions,
Tools, and Resources; Chapter 5 Obfuscation

A Survey of Obfuscation Techniques The Nature of Obfuscation: A
Motivating Example; Data-Based Obfuscations; Control-Based
Obfuscation; Simultaneous Control-Flow and Data-Flow Obfuscation;
Achieving Security by Obscurity; A Survey of Deobfuscation Techniques;
The Nature of Deobfuscation: Transformation Inversion; Deobfuscation
Tools; Practical Deobfuscation; Case Study; First Impressions; Analyzing
Handlers Semantics; Symbolic Execution; Solving the Challenge; Final
Thoughts; Exercises; Appendix Sample Names and Corresponding
SHA1 Hashes; Index

Analyzing how hacks are done, so as to stop them in the future
Reverse engineering is the process of analyzing hardware or software
and understanding it, without having access to the source code or
design documents. Hackers are able to reverse engineer systems and
exploit what they find with scary results. Now the good guys can use
the same tools to thwart these threats. Practical Reverse Engineering
goes under the hood of reverse engineering for security analysts,
security engineers, and system programmers, so they can learn how to
use these same processes to stop hacke



