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Analyzing how hacks are done, so as to stop them in the future
Reverse engineering is the process of analyzing hardware or software
and understanding it, without having access to the source code or
design documents. Hackers are able to reverse engineer systems and
exploit what they find with scary results. Now the good guys can use
the same tools to thwart these threats. Practical Reverse Engineering
goes under the hood of reverse engineering for security analysts,
security engineers, and system programmers, so they can learn how to
use these same processes to stop hacke



