Record Nr. UNINA9910784701703321 **Titolo** Computer aided methods in optimal design and operations [[electronic resource] /] / editors, I. D. L. Bogle, J. Zilinskas Pubbl/distr/stampa Singapore; ; Hackensack, NJ, : World Scientific Publishing, c2006 **ISBN** 1-281-37325-7 9786611373252 981-277-295-2 Descrizione fisica 1 online resource (238 p.) Collana Series on computers and operations research;; v. 7 Altri autori (Persone) Boglel. D. L (lan David Lockhart) ZilinskasJ <1973-> (Julius) Disciplina 620/.00420285 Soggetti Computer-aided design Mathematical optimization Control theory Chemical engineering - Mathematical models Lingua di pubblicazione Inglese **Formato** Materiale a stampa Livello bibliografico Monografia "Containing papers presented at the bilateral workshop by British and Note generali Lithuanian scientists, the book brings together researchers' contributions from different fields--chemical engineering including reaction and separation processes, food and biological production, as well as business cycle optimization, bankruptcy, protein analysis and bioinformatics"--P. [4] of cover. Includes bibliographical references. Nota di bibliografia Nota di contenuto Contents : Preface ; Hybrid Methods for Optimisation : 2. Hybrid Methods for Optimisation ; 1. Introduction ; 3. Embedded Hybrid Methods ; 4. Sequential Hybrid Methods : 6. Discussion : 5. Illustrative Case Study ; An MILP Model for Multi-class Data References Classification ; 1. Introduction 2. Problem Statement and Mathematical Formulation 3. Testing Procedure : 4. An Iterative Solution Algorithm : 5. Computational Results ; 6. Conclusions : References ; Implementation of Parallel Optimization Algorithms Using Generalized Branch and **Bound Template**

; 1. Introduction		
2. General Branch and	Bound Algorithm	3.
BB Algorithm Template		
; References	; Application of Stochastic Approximation in	
Technical Design	; 1.	
Introduction	; 2. Formulation of the Optimization Proble	m
; 3. Computer Modelling	g	
4. Application of Order	Statistic to Optimality Testing	
5. Computer Modelling	; 6. Conclusion	;
References ;	Application of the Monte-Carlo Method to	
Stochastic Linear Programming		
; 1. Introduction	; 2. Stochastic Differentiation and	
Monte-Carlo Estimators	8	
3. Stochastic Procedure	e for Optimisation	
4. Statistical Testing of	the Optimality Hypothesis	
; 5. Computer Study	; 6. Discussion and Conclusions	
; References	; Studying the Rate of Convergence of the	
Steepest Descent Option	misation Algorithm with Relaxation	
; 1. Introduction		
2. The General Quadra	tic Case	

Sommario/riassunto

This book covers different topics on optimal design and operations with particular emphasis on chemical engineering applications. A wide range of optimization methods - deterministic, stochastic, global and hybrid - are considered. Containing papers presented at the bilateral workshop by British and Lithuanian scientists, the book brings together researchers' contributions from different fields - chemical engineering including reaction and separation processes, food and biological production, as well as business cycle optimization, bankruptcy, protein analysis and bioinformatics. <i>Sample