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Most Perl programmers were originally trained as C and Unix
programmers, so the Perl programs that they write bear a strong
resemblance to C programs. However, Perl incorporates many features
that have their roots in other languages such as Lisp. These advanced
features are not well understood and are rarely used by most Perl
programmers, but they are very powerful. They can automate tasks in
everyday programming that are difficult to solve in any other way. One
of the most powerful of these techniques is writing functions that
manufacture or modify other functions. For example, instead of wri


