
UNINA99107842351033211. Record Nr.

Titolo Higher-order Perl [[electronic resource] ] : a guide to program
transformation / / Mark Jason Dominus

Pubbl/distr/stampa Amsterdam ; ; Boston, Mass., : Morgan Kaufmann Publishers, c2005

ISBN 1-281-01008-1
9786611010089
1-4237-0817-2
0-08-047834-4

Descrizione fisica 1 online resource (601 p.)

Disciplina 005.13/3

Soggetti Perl (Computer program language)
Object-oriented programming (Computer science)

Lingua di pubblicazione Inglese

Formato

Edizione [1st ed.]

Livello bibliografico

Note generali Includes indexes.

Nota di contenuto Front Cover; Higher-Order Perl: A Guide to Program Transformation;
Copyright Page; Contents; Preface; Chapter 1. Recursion and Callbacks;
1.1 Decimal to Binary Conversion; 1.2 Factorial; 1.3 The Tower of
Hanoi; 1.4 Hierarchical Data; 1.5 Applications and Variations of
Directory Walking; 1.6 Functional Versus Object-Oriented
Programming; 1.7 HTML; 1.8 When Recursion Blows Up; Chapter 2.
Dispatch Tables; 2.1 Configuration File Handling; 2.2 Calculator;
Chapter 3. Caching and Memoization; 3.1 Caching Fixes Recursion; 3.2
Inline Caching; 3.3 Good Ideas; 3.4 Memoization; 3.5 The Memoize
Module
3.6 Caveats3.7 Key Generation; 3.8 Caching in Object Methods; 3.9
Persistent Caches; 3.10 Alternatives to Memoization; 3.11 Evangelism;
3.12 The Benefits of Speed; Chapter 4. Iterators; 4.1 Introduction; 4.2
Homemade Iterators; 4.3 Examples; 4.4 Filters and Transforms; 4.5 The
Semipredicate Problem; 4.6 Alternative Interfaces to Iterators; 4.7 An
Extended Example: Web Spiders; Chapter 5. From Recursion to
Iterators; 5.1 The Partition Problem Revisited; 5.2 How to Convert a
Recursive Function to an Iterator; 5.3 A Generic Search Iterator; 5.4
Other General Techniques for Eliminating Recursion

Autore Dominus Mark Jason <1969->

Materiale a stampa

Monografia



Sommario/riassunto

Chapter 6. Indinite Streams6.1 Linked Lists; 6.2 Lazy Linked Lists; 6.3
Recursive Streams; 6.4 The Hamming Problem; 6.5 Regex String
Generation; 6.6 The Newton-Raphson Method; 6.7 Power Series;
Chapter 7. Higher-Order Functions and Currying; 7.1 Currying; 7.2
Common Higher-Order Functions; 7.3 reduce() and combine(); 7.4
Databases; Chapter 8. Parsing; 8.1 Lexers; 8.2 Parsing in General; 8.3
Recursive-Descent Parsers; 8.4 Arithmetic Expressions; 8.5 Parsing
Regexes; 8.6 Outlines; 8.7 Database-Query Parsing; 8.8 Backtracking
Parsers; 8.9 Overloading; Chapter 9. Declarative Programming
9.1 Constraint Systems9.2 Local Propagation Networks; 9.3 Linear
Equations; 9.4 linogram: A Drawing System; 9.5 Conclusion; Index;
Function Index; A Note About the Cover
Most Perl programmers were originally trained as C and Unix
programmers, so the Perl programs that they write bear a strong
resemblance to C programs. However, Perl incorporates many features
that have their roots in other languages such as Lisp. These advanced
features are not well understood and are rarely used by most Perl
programmers, but they are very powerful. They can automate tasks in
everyday programming that are difficult to solve in any other way. One
of the most powerful of these techniques is writing functions that
manufacture or modify other functions. For example, instead of wri


