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Intro -- Title -- Preface -- Contents -- Chapter 01 -- Chapter 1 --
Elementary Signals -- his chapter begins with a discussion of
elementary signals that may be applied to electric networks. The unit
step, unit ramp, and delta functions are then introduced. The sampling
and sifting properties of the delta function are defined and ... -- 1.1
Signals Described in Math Form -- Consider the network of Figure 1.1
where the switch is closed at time . -- Figure 1.1. A switched network
with open terminals -- We wish to describe in a math form for the time
interval . To do this, it is conve nient to divide the time interval into two
parts, , and . -- For the time interval , the switch is open and therefore,
the output voltage is zero. In other words, -- (1.1) -- For the time
interval , the switch is closed. Then, the input voltage appears at the
output, i.e., -- (1.2) -- Combining (1.1) and (1.2) into a single
relationship, we obtain -- (1.3) -- We can express (1.3) by the
waveform shown in Figure 1.2. -- Figure 1.2. Waveform for as defined
in relation (1.3) -- The waveform of Figure 1.2 is an example of a
discontinuous function. A function is said to be dis continuous if it
exhibits points of discontinuity, that is, the function jumps from one
value to another without taking on any intermediate values. -- 1.2 The
Unit Step Function -- A well known discontinuous function is the unit
step function which is defined as -- (1.4) -- It is also represented by
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the waveform of Figure 1.3. -- Figure 1.3. Waveform for -- In the
waveform of Figure 1.3, the unit step function changes abruptly from to
at . But if it changes at instead, it is denoted as . In this case, its
waveform and definition are as shown in Figure 1.4 and relation (1.5)
respectively. -- Figure 1.4. Waveform for -- (1.5).
If the unit step function changes abruptly from to at , it is denoted as .
In this case, its waveform and definition are as shown in Figure 1.5 and
relation (1.6) respectively. -- Figure 1.5. Waveform for -- (1.6) --
Example 1.1 -- Consider the network of Figure 1.6, where the switch is
closed at time . -- Figure 1.6. Network for Example 1.1 -- Express the
output voltage as a function of the unit step function, and sketch the
appropriate waveform. -- Solution: -- For this example, the output
voltage for , and for . Therefore, -- (1.7) -- and the waveform is shown
in Figure 1.7. -- Figure 1.7. Waveform for Example 1.1 -- Other forms
of the unit step function are shown in Figure 1.8. -- Figure 1.8. Other
forms of the unit step function -- Unit step functions can be used to
represent other time-varying functions such as the rectangular pulse
shown in Figure 1.9. -- Figure 1.9. A rectangular pulse expressed as
the sum of two unit step functions -- Thus, the pulse of Figure 1.9(a) is
the sum of the unit step functions of Figures 1.9(b) and 1.9(c) and it is
represented as . -- The unit step function offers a convenient method
of describing the sudden application of a volt age or current source.
For example, a constant voltage source of applied at , can be denoted
as . Likewise, a sinusoidal voltage source that is a... -- Example 1.2 --
Express the square waveform of Figure 1.10 as a sum of unit step
functions. The vertical dotted lines indicate the discontinuities at , and
so on. -- Figure 1.10. Square waveform for Example 1.2 -- Solution: --
Line segment has height , starts at , and terminates at . Then, as in
Example 1.1, this segment is expressed as -- (1.8) -- Line segment
has height , starts at and terminates at . This segment is expressed as
-- (1.9) -- Line segment has height , starts at and terminates at . This
segment is expressed as -- (1.10).
Line segment has height , starts at , and terminates at . It is expressed
as -- (1.11) -- Thus, the square waveform of Figure 1.10 can be
expressed as the summation of (1.8) through (1.11), that is, -- (1.12)
-- Combining like terms, we obtain -- (1.13) -- Example 1.3 --
Express the symmetric rectangular pulse of Figure 1.11 as a sum of
unit step functions. -- Figure 1.11. Symmetric rectangular pulse for
Example 1.3 -- Solution: -- This pulse has height , starts at , and
terminates at . Therefore, with refer ence to Figures 1.5 and 1.8 (b), we
obtain -- (1.14) -- Example 1.4 -- Express the symmetric triangular
waveform of Figure 1.12 as a sum of unit step functions. -- Figure
1.12. Symmetric triangular waveform for Example 1.4 -- Solution: --
We first derive the equations for the linear segments and shown in
Figure 1.13. -- Figure 1.13. Equations for the linear segments of Figure
1.12 -- For line segment , -- (1.15) -- and for line segment , -- (1.16)
-- Combining (1.15) and (1.16), we obtain -- (1.17) -- Example 1.5 --
Express the waveform of Figure 1.14 as a sum of unit step functions.
-- Figure 1.14. Waveform for Example 1.5 -- Solution: -- As in the
previous example, we first find the equations of the linear segments
linear segments and shown in Figure 1.15. -- Figure 1.15. Equations
for the linear segments of Figure 1.14 -- Following the same procedure
as in the previous examples, we obtain -- Multiplying the values in
parentheses by the values in the brackets, we obtain -- and combining
terms inside the brackets, we obtain -- (1.18) -- Two other functions
of interest are the unit ramp function, and the unit impulse or delta
function. We will introduce them with the examples that follow. --
Example 1.6.



Sommario/riassunto

In the network of Figure 1.16 is a constant current source and the
switch is closed at time . Express the capacitor voltage as a function of
the unit step. -- Figure 1.16. Network for Example 1.6 -- Solution: --
The current through the capacitor is , and the capacitor voltage is --
(1.19) -- where is a dummy variable. -- Since the switch closes at , we
can express the current as -- (1.20) -- and assuming that for , we can
write (1.19) as -- (1.21) -- or -- (1.22) -- Therefore, we see that when
a capacitor is charged with a constant current, the voltage across it is a
linear function and forms a ramp with slope as shown in Figure 1.17.
-- Figure 1.17. Voltage across a capacitor when charged with a
constant current source -- 1.3 The Unit Ramp Function -- The unit
ramp function, denoted as , is defined as -- (1.23) -- where is a
dummy variable. -- We can evaluate the integral of (1.23) by
considering the area under the unit step function from as shown in
Figure 1.18. -- Figure 1.18. Area under the unit step function from --
Therefore, we define as -- (1.24) -- Since is the integral of , then must
be the derivative of , i.e., -- (1.25) -- Higher order functions of can be
generated by repeated integration of the unit step function. For
example, integrating twice and multiplying by , we define as -- (1.26)
-- Similarly, -- (1.27) -- and in general, -- (1.28) -- Also, -- (1.29) --
Example 1.7 -- In the network of Figure 1.19, the switch is closed at
time and for . Express the inductor voltage in terms of the unit step
function. -- Figure 1.19. Network for Example 1.7 -- Solution: -- The
voltage across the inductor is -- (1.30) -- and since the switch closes
at , -- (1.31) -- Therefore, we can write (1.30) as -- (1.32).
But, as we know, is constant ( or ) for all time except at where it is
discontinuous. Since the derivative of any constant is zero, the
derivative of the unit step has a non-zero value only at . The derivative
of the unit step function is def... -- 1.4 The Delta Function -- The unit
impulse or delta function, denoted as , is the derivative of the unit step
. It is also defined as -- (1.33) -- and -- (1.34) -- To better
understand the delta function , let us represent the unit step as shown
in Fig ure 1.20 (a). -- Figure 1.20. Representation of the unit step as a
limit -- The function of Figure 1.20 (a) becomes the unit step as .
Figure 1.20 (b) is the derivative of Figure 1.20 (a), where we see that as
, becomes unbounded, but the area of the rect angle remains .
Therefore, in the limit, we can think of  as a... -- Two useful properties
of the delta function are the sampling property and the sifting property.
-- 1.4.1 The Sampling Property of the Delta Function -- The sampling
property of the delta function states that -- (1.35) -- or, when , --
(1.36) -- that is, multiplication of any function by the delta function
results in sampling the func tion at the time instants where the delta
function is not zero. The study of discrete-time systems is based on
this property. -- Proof: -- Since then, -- (1.37) -- We rewrite as --
(1.38) -- Integrating (1.37) over the interval and using (1.38), we
obtain -- (1.39) -- The first integral on the right side of (1.39) contains
the constant term -- this can be written outside the integral, that is, --
(1.40) -- The second integral of the right side of (1.39) is always zero
because -- and -- Therefore, (1.39) reduces to -- (1.41) --
Differentiating both sides of (1.41), and replacing with , we obtain --
(1.42) -- 1.4.2 The Sifting Property of the Delta Function.
The sifting property of the delta function states that.

This text is primarily written for junior and senior undergraduates
majoring in electrical   and computer engineering. You will need this
text if you are a student or working professional   seeking to learn
and/or review the basics of the Laplace and Z-transforms, the Fast
Fourier   Transform (FFT), state variables, and the design of analog and
digital filters. Contains many   real-world examples completely solved



in detail and verified with MATLAB computations and  Simulink models.


