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This book aims to present a new approach called Flow Curvature
Method that applies Differential Geometry to Dynamical Systems.
Hence, for a trajectory curve, an integral of any n-dimensional
dynamical system as a curve in Euclidean n-space, the curvature of the
trajectory - or the flow - may be analytically computed. Then, the
location of the points where the curvature of the flow vanishes defines
a manifold called flow curvature manifold. Such a manifold being
defined from the time derivatives of the velocity vector field, contains
information about the dynamics of the system, hence identifyi



