
UNINA99107602758033211. Record Nr.

Titolo Embedded Machine Learning for Cyber-Physical, IoT, and Edge
Computing [[electronic resource] ] : Software Optimizations and
Hardware/Software Codesign / / edited by Sudeep Pasricha,
Muhammad Shafique

Pubbl/distr/stampa Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2024

ISBN 3-031-39932-3

Descrizione fisica 1 online resource (481 pages)

Altri autori (Persone) ShafiqueMuhammad

Disciplina 006.22

Soggetti Embedded computer systems
Electronic circuits
Cooperating objects (Computer systems)
Embedded Systems
Electronic Circuits and Systems
Cyber-Physical Systems

Lingua di pubblicazione Inglese

Formato

Edizione [1st ed. 2024.]

Livello bibliografico

Nota di contenuto Intro -- Preface -- Acknowledgments -- Contents -- Part I Efficient
Software Design for Embedded Machine Learning -- Machine Learning
Model Compression for Efficient Indoor Localization on Embedded
Platforms -- 1 Introduction -- 2 Background and Related Work -- 3
CHISEL Framework -- 3.1 Data Preprocessing and Augmentation -- 3.2
Network Architecture -- 3.3 Model Compression -- 4 Experiments --
4.1 Evaluation on UJIIndoorLoc Dataset -- 4.2 Evaluation on
Compression-Aware Training -- 5 Conclusion -- References -- A
Design Methodology for Energy-Efficient Embedded Spiking Neural
Networks -- 1 Introduction -- 1.1 Overview -- 1.2 Design Constraints
for Embedded SNNs -- 2 Preliminaries -- 2.1 Spiking Neural Networks
(SNNs) -- 2.2 Spike-Timing-Dependent Plasticity (STDP) -- 3 A Design
Methodology for Embedded SNNs -- 3.1 Overview -- 3.2 Reduction of
SNN Operations -- 3.3 Learning Enhancements -- 3.4 Weight
Quantization -- 3.5 Evaluation of Memory and Energy Requirements --
3.6 Employment of Approximate DRAM -- 4 Experimental Evaluations

Autore Pasricha Sudeep

Materiale a stampa

Monografia



-- 4.1 Classification Accuracy -- 4.2 Reduction of Memory
Requirement -- 4.3 Improvement of Energy Efficiency -- 4.4 Impact of
Approximate DRAM -- 5 Conclusion -- References -- Compilation and
Optimizations for Efficient Machine Learning on Embedded Systems --
1 Introduction -- 2 Background and Related Works -- 2.1 Efficient DNN
Designs -- 2.2 Efficient Accelerator Designs and DNN Mapping
Methods -- 2.3 Efficient Co-Design Optimization -- 3 Efficient Machine
Learning Model Designs -- 3.1 The ELB-NN -- 3.1.1 Hybrid
Quantization Scheme -- 3.1.2 Hardware Accelerator for ELB-NN -- 3.2
The VecQ -- 3.2.1 Quantization with Vector Loss -- 3.2.2 Framework
Integration -- 4 Efficient Accelerator Design and Workload Mapping --
4.1 DNNBuilder -- 4.1.1 An End-to-end Automation Flow -- 4.1.2
Architecture Novelties.
4.1.3 State-of-the-art Performance -- 4.2 PyLog: A Python-Based FPGA
Programming Flow -- 4.2.1 PyLog Flow Overview -- 4.2.2 PyLog
Features -- 4.2.3 PyLog Evaluation Results -- 5 Efficient Optimizations
-- 5.1 Overview of Hardware-aware Neural Architecture Search (NAS)
-- 5.2 HW-Aware NAS Formulation -- 5.3 FPGA/DNN Co-Design --
5.3.1 The Key to Co-Design: Bundle -- 5.3.2 Progressively Reducing
Search Space -- 5.3.3 Evaluation Results -- 5.4 EDD: Efficient
Differential DNN Architecture Search -- 5.4.1 Fused Co-Design Space
-- 5.4.2 Differentiable Performance and Resource Formulation -- 5.4.3
State-of-the-art Results -- 6 Conclusion -- References -- A Pedestrian
Detection Case Study for a Traffic Light Controller -- 1 Introduction --
2 Related Work -- 2.1 Neural Networks for Pedestrian Detection -- 2.2
Pedestrian Detection on Embedded Systems -- 2.3 Quantization -- 3
Pedestrian Detection Use Case -- 4 Results -- 4.1 Experimentation
Setup -- 4.2 No Constraints -- 4.3 Cost Constraints -- 4.4 Cost,
Latency, and Precision Constraints -- 4.5 Effect of Resolution and
Quantization -- 5 Conclusion -- References -- How to Train Accurate
BNNs for Embedded Systems? -- 1 Introduction -- 2 Related Work -- 3
Background on BNNs -- 3.1 Inference -- 3.2 Training -- 4
Classification of Accuracy Repair Techniques -- 5 Overview of Accuracy
Repair Techniques as Applied in the Literature -- 5.1 Training
Techniques -- 5.1.1 Binarizer (STE) -- 5.1.2 Normalization -- 5.1.3
Teacher-Student -- 5.1.4 Regularization -- 5.1.5 Two-Stage Training
-- 5.1.6 Optimizer -- 5.2 Network Topology Changing -- 5.2.1 Scaling
Factor -- 5.2.2 Ensemble -- 5.2.3 Activation Function -- 5.2.4 Double
Residual -- 5.2.5 Squeeze-and-Excitation -- 6 Empirical Review of
Accuracy Repair Methods -- 6.1 Establishing the Design Space -- 6.2
Finding a Good Baseline BNN -- 6.3 Design Space Exploration.
6.3.1 Binarizer (STE) -- 6.3.2 Normalization -- 6.3.3 Scaling Factor --
6.3.4 Two-Stage Training, Activation Function, and Double Residual --
7 Discussion and Future Research -- 7.1 Accuracy Gap -- 7.2 Benefit
and Cost of BNNs -- 8 Conclusion -- References -- Embedded
Neuromorphic Using Intel's Loihi Processor -- 1 Introduction -- 2
Brain-Inspired Spiking Neural Networks -- 2.1 Spiking Neuron Models
-- 2.2 Spike Coding Methods -- 2.3 SNN Learning Methods -- 3
Conventional Architectures vs. Neuromorphic Architectures -- 4 Event-
Based Cameras -- 5 Applications and Datasets for Event-Based SNNs
-- 6 The Loihi Architecture -- 6.1 Neuron Model -- 6.2 Chip
Architecture -- 6.3 Second Generation: Loihi 2 -- 6.4 Tools to Support
Loihi Developers -- 6.5 SOTA Results of Event-Based SNNs on Loihi --
7 Case Study for Autonomous Vehicles: Car Detection with CarSNN --
7.1 Problem Analysis and General Design Decisions -- 7.2 CarSNN
Methodology -- 7.2.1 CarSNN Model Design -- 7.2.2 Parameters for
Training -- 7.2.3 Parameters for Feeding the Input Data -- 7.3
Evaluation of CarSNN Implemented on Loihi -- 7.3.1 Experimental



Setup -- 7.3.2 Accuracy Results for Offline Trained CarSNN -- 7.3.3
CarSNN Implemented on Loihi -- 7.3.4 Comparison with the State of
the Art -- 8 Conclusion -- References -- Part II Hardware-Software Co-
Design and Co-Optimizations for Embedded Machine Learning --
Machine Learning for Heterogeneous Manycore Design -- 1
Introduction -- 2 ML-Enabled 3D CPU/GPU-Based Heterogeneous
Manycore Design -- 2.1 Related Prior Work -- 2.1.1 3D Heterogeneous
Manycore Systems -- 2.1.2 Multi-Objective Optimization Algorithms --
3 3D Heterogeneous Manycore Design Formulation -- 4 MOO-STAGE:
ML-Enabled Manycore Design Framework -- 4.1 MOO-STAGE: Local
Search -- 4.2 MOO-STAGE: Meta Search -- 5 Experimental Results --
5.1 Experimental Setup.
5.2 Comparing the Different Algorithms -- 5.3 Comparison with Mesh
NoC-Based Heterogeneous Manycore System -- 6 MOO-STAGE FOR
M3D-Based Manycore Systems -- 6.1 MOO-STAGE for M3D Design --
7 Conclusion -- References -- Hardware-Software Co-design for Ultra-
Resource-Constrained Embedded Machine Learning Inference: A
Printed Electronics Use Case -- 1 Introduction -- 2 Background on
Printed Electronics -- 3 Preliminaries -- 4 Bespoke ML Classification
Circuits -- 4.1 Resource-Aware ML Algorithm Selection -- 4.2 Bespoke
Classifier Implementation -- 5 Co-Design for Approximate ML
Classification Circuits -- 5.1 Approximate MLPs and SVMs -- 5.2
Approximate Decision Trees -- 6 Co-design for Stochastic Neural
Network Circuits -- 6.1 Mixed-Signal Stochastic Neuron -- 6.2 Analog
Stochastic SNG -- 6.3 Analog Stochastic Activation Function -- 6.4
Hardware-Driven Training -- 6.5 Mixed-Signal Stochastic Inference --
7 Conclusion -- References -- Cross-Layer Optimizations for Efficient
Deep Learning Inference at the Edge -- 1 Introduction -- 2
Preliminaries -- 3 DNN Optimization Techniques -- 3.1 Pruning --
3.1.1 Fine-Grained Pruning -- 3.1.2 Course-Grained Pruning -- 3.2
Quantization -- 3.3 Knowledge Distillation -- 3.4 Neural Architecture
Search -- 3.5 Hardware Approximations -- 4 Cross-Layer Optimization
-- 4.1 Methodology -- 4.2 Structured Pruning -- 4.3 Quantization --
4.4 Hardware-Level Approximations: Impact of Self-Healing and Non-
Self-Healing Approximate Designs on DNN Accuracy -- 5 End-to-End
System-Level Approximations -- 6 Conclusion -- References -- Co-
designing Photonic Accelerators for Machine Learningon the Edge -- 1
Introduction -- 2 Background and Related Work -- 3 Noncoherent
Photonic Computation Overview -- 4 CrossLight Architecture -- 4.1 MR
Device Engineering and Fabrication -- 4.2 Tuning Circuit Design -- 4.3
Architecture Design.
4.3.1 Decomposing Vector Operations in CONV/FC Layers -- 4.3.2
Vector Dot Product (VDP) Unit Design -- 4.3.3 Optical Wavelength
Reuse in VDP Units -- 5 Evaluation and Simulation Results -- 5.1
Simulation Setup -- 5.2 Results: CrossLight Resolution Analysis -- 5.3
Results: CrossLight Sensitivity Analysis -- 5.4 Results: Comparison with
State-of-the-Art Accelerators -- 6 Conclusion -- References --
Hardware-Software Co-design of Deep Neural Architectures: From
FPGAs and ASICs to Computing-in-Memories -- 1 Introduction -- 2
Hardware-Software Co-design with Neural Architecture Search -- 3
Hardware-Aware Neural Architecture Search for FPGA -- 3.1
Implementation of DNNs on FPGAs -- 3.2 Co-design Framework for
FPGAs -- 3.2.1 Problem Statement and Solution -- 3.3 Experiments --
3.3.1 Search Space Setup -- 3.4 Comparison Results with the Existing
NAS Frameworks -- 3.5 Comparison Results with the Existing
Architectures -- 3.6 Importance of Co-exploration -- 3.7 Concluding
Remarks for NAS-F -- 4 Co-design of Neural Networks and ASICs --
4.1 Problem Analysis for DNN-ASIC Co-design -- 4.1.1 Major



Sommario/riassunto

Components -- 4.1.2 Problem Definition -- 4.2 Co-design Framework
for ASIC -- 4.3 Experimental Evaluation -- 4.3.1 Evaluation
Environment -- 4.4 Design Space Exploration -- 4.4.1 Results on
Multiple Tasks for Multiple Datasets -- 4.5 Concluding Remarks for
NASAIC -- 5 Co-design of Neural Networks and Computing-in-Memory
Accelerators -- 5.1 Compute-in-Memory Neural Accelerators -- 5.1.1
Device and Its Variations -- 5.1.2 Crossbar Architecture -- 5.1.3
NeuroSIM -- 5.2 Problem Definition -- 5.3 Co-design Framework for
CiM -- 5.4 Experiments and Results -- 5.4.1 Experiment Setup --
5.4.2 Comparison Results to State-of-the-Art NAS -- 5.4.3 Results of
Multi-Objective Optimization -- 5.5 Concluding Remarks for NACIM --
6 Conclusions -- References.
Hardware and Software Optimizations for Capsule Networks.

This book presents recent advances towards the goal of enabling
efficient implementation of machine learning models on resource-
constrained systems, covering different application domains. The focus
is on presenting interesting and new use cases of applying machine
learning to innovative application domains, exploring the efficient
hardware design of efficient machine learning accelerators, memory
optimization techniques, illustrating model compression and neural
architecture search techniques for energy-efficient and fast execution
on resource-constrained hardware platforms, and understanding
hardware-software codesign techniques for achieving even greater
energy, reliability, and performance benefits. Discusses efficient
implementation of machine learning in embedded, CPS, IoT, and edge
computing; Offers comprehensive coverage of hardware design,
software design, and hardware/software co-design and co-
optimization; Describes real applications to demonstrate how
embedded, CPS, IoT, and edge applications benefit from machine
learning.


