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Hardware and Software Optimizations for Capsule Networks.

This book presents recent advances towards the goal of enabling
efficient implementation of machine learning models on resource-
constrained systems, covering different application domains. The focus
is on presenting interesting and new use cases of applying machine
learning to innovative application domains, exploring the efficient
hardware design of efficient machine learning accelerators, memory
optimization techniques, illustrating model compression and neural
architecture search techniques for energy-efficient and fast execution
on resource-constrained hardware platforms, and understanding
hardware-software codesign techniques for achieving even greater
energy, reliability, and performance benefits. Discusses efficient
implementation of machine learning in embedded, CPS, IoT, and edge
computing; Offers comprehensive coverage of hardware design,
software design, and hardware/software co-design and co-
optimization; Describes real applications to demonstrate how
embedded, CPS, IoT, and edge applications benefit from machine
learning.


