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This open access book gives a systematic introduction into the spectral
theory of differential operators on metric graphs. Main focus is on the
fundamental relations between the spectrum and the geometry of the
underlying graph. The book has two central themes: the trace formula
and inverse problems. The trace formula is relating the spectrum to the
set of periodic orbits and is comparable to the celebrated Selberg and
Chazarain-Duistermaat-Guillemin-Melrose trace formulas.
Unexpectedly this formula allows one to construct non-trivial
crystalline measures and Fourier quasicrystals solving one of the long-
standing problems in Fourier analysis. The remarkable story of this
mathematical odyssey is presented in the first part of the book. To
solve the inverse problem for Schrödinger operators on metric graphs
the magnetic boundary control method is introduced. Spectral data
depending on the magnetic flux allow one to solve the inverse problem
in full generality, this means to reconstruct not only the potential on a
given graph, but also the underlying graph itself and the vertex
conditions. The book provides an excellent example of recent studies
where the interplay between different fields like operator theory,
algebraic geometry and number theory, leads to unexpected and sound
mathematical results. The book is thought as a graduate course book
where every chapter is suitable for a separate lecture and includes
problems for home studies. Numerous illuminating examples make it
easier to understand new concepts and develop the necessary intuition
for further studies.


