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This book focuses on the application of machine learning techniques in
engineering and the sciences, emphasizing their role in modeling and
simulation. Edited by Timon Rabczuk and Klaus-Jurgen Bathe, it covers
a wide range of topics including solid structural mechanics, fluid
dynamics, heat transfer, and more. The book highlights the potential of
machine learning to solve complex engineering problems, reduce
computational costs, and innovate in fields like digital twins and new
material design. This comprehensive volume is intended for
professionals and researchers in engineering and applied sciences,
offering both theoretical insights and practical applications.



