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This monograph provides an introduction to the theory of Clifford
algebras, with an emphasis on its connections with the theory of Lie
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groups and Lie algebras. The book starts with a detailed presentation
of the main results on symmetric bilinear forms and Clifford algebras. It
develops the spin groups and the spin representation, culminating in
Cartan’s famous triality automorphism for the group Spin(8). The
discussion of enveloping algebras includes a presentation of Petracci’s
proof of the Poincaré–Birkhoff–Witt theorem. This is followed by
discussions of Weil algebras, Chern--Weil theory, the quantum Weil
algebra, and the cubic Dirac operator. The applications to Lie theory
include Duflo’s theorem for the case of quadratic Lie algebras,
multiplets of representations, and Dirac induction. The last part of the
book is an account of Kostant’s structure theory of the Clifford algebra
over a semisimple Lie algebra. It describes his “Clifford algebra
analogue” of the Hopf–Koszul–Samelson theorem, and explains his
fascinating conjecture relating the Harish-Chandra projection for
Clifford algebras to the principal sl(2) subalgebra. Aside from these
beautiful applications, the book will serve as a convenient and up-to-
date reference for background material from Clifford theory, relevant
for students and researchers in mathematics and physics.


