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This book extends the local central limit theorem to inhomogeneous
Markov chains whose state spaces and transition probabilities are
allowed to change in time. Such chains are used to model Markovian
systems depending on external time-dependent parameters. It
develops a new general theory of local limit theorems for additive
functionals of Markov chains, in the regimes of local, moderate, and
large deviations, and provides nearly optimal conditions for the
classical expansions, as well as asymptotic corrections when these
conditions fail. Applications include local limit theorems for
independent but not identically distributed random variables, Markov
chains in random environments, and time-dependent perturbations of
homogeneous Markov chains. The inclusion of numerous examples, a
comprehensive review of the literature, and an account of the historical
background of the subject make this self-contained book accessible to
graduate students. It will also be useful for researchersin probability
and ergodic theory who are interested in asymptotic behaviors, random
walks in random environments, random dynamical systems and non-
stationary systems.



