

1. Record Nr.	UNINA9910735796003321
Autore	Doba Takahiro
Titolo	Iron-Catalyzed C-H/C-H Coupling for Synthesis of Functional Small Molecules and Polymers / / by Takahiro Doba
Pubbl/distr/stampa	Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2023
ISBN	981-9941-21-0
Edizione	[1st ed. 2023.]
Descrizione fisica	1 online resource (xiv, 153 pages) : illustrations (some color)
Collana	Springer Theses, Recognizing Outstanding Ph.D. Research, , 2190-5061
Disciplina	547
Soggetti	Organometallic chemistry Chemistry Catalysis Materials Force and energy Polymerization Organometallic Chemistry Chemical Synthesis Materials for Energy and Catalysis Polymer Synthesis
Lingua di pubblicazione	Inglese
Formato	Materiale a stampa
Livello bibliografico	Monografia
Nota di bibliografia	Includes bibliographical references.
Nota di contenuto	1. General Introduction -- 2. Iron-Catalyzed Regioselective Thienyl C–H/C–H Homocoupling -- 3. Development of a Synthetic Method for Tridentate Phosphine Ligands -- 4. Iron-Catalyzed Regioselective Thienyl C–H/C–H Polycondensation -- 5. Iron-Catalyzed Oxidative C–H Alkenylation of Thiophenes with Enamines -- 6. Conclusions and Perspectives. .
Sommario/riassunto	This thesis describes the development of iron-catalyzed thienyl C–H/C–H coupling. This is applied to the synthesis of highly conjugated and electron-rich thiophene compounds of interest in materials science by utilization of low redox potential of iron in combination with a mild oxalate oxidant. Transition-metal-catalyzed C(sp ₂)–H/C(sp ₂)–H coupling has attracted much attention as one of the most straightforward methods to construct C(sp ₂)–C(sp ₂) bonds. However,

application of this ideal transformation to the synthesis of redox-sensitive pi-materials was hindered by the requirement of a strong oxidant for catalyst turnover. This limitation originates primarily from the large redox potential of conventional transition-metal catalysts such as palladium and rhodium. This thesis shows that the efficiency of C–H activation was significantly improved by introduction of a new conjugated tridentate phosphine ligand, giving direct access to polymeric thiophene materials from simple thiophene monomers. Considering the importance of environmentally friendly organic synthesis in terms of UN Sustainable Development Goals, the reactions described herein highlight the potential of iron, the most abundant transition-metal on earth, for the direct synthesis of functional small molecules and polymers of importance in energy device applications.
