1. Record Nr.

Titolo

Pubbl/distr/stampa
ISBN

Edizione
Descrizione fisica

Collana

Disciplina
Soggetti

Lingua di pubblicazione
Formato
Livello bibliografico

Nota di contenuto

UNINA9910734891603321

Computer Aided Verification : 35th International Conference, CAV
2023, Paris, France, July 17-22, 2023, Proceedings, Part 11l / / edited by
Constantin Enea, Akash Lal

Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2023
3-031-37709-5

[1st ed. 2023.]

1 online resource (XVII, 502 p. 140 illus., 88 illus. in color.)

Lecture Notes in Computer Science, , 1611-3349 ; ; 13966

005.1

Software engineering

Artificial intelligence

Algorithms

Computer engineering

Computer networks

Software Engineering

Artificial Intelligence

Design and Analysis of Algorithms
Computer Engineering and Networks

Inglese
Materiale a stampa
Monografia

Intro -- Preface -- Organization -- Contents - Part Ill -- Probabilistic
Systems -- A Flexible Toolchain for Symbolic Rabin Games under Fair
and Stochastic Uncertainties -- 1 Introduction -- 2 Theoretical
Background -- 2.1 Solving Rabin Games Symbolically -- 2.2 Computing
Symbolic Controllers for Stochastic Dynamical Systems -- 3
Implementation Details -- 3.1 Genie -- 3.2 FairSyn -- 3.3 Mascot-SDS
-- 4 Examples -- 4.1 Synthesizing Code-Aware Resource Managers
Using FairSyn -- 4.2 Synthesizing Controllers for Stochastic Dynamical
Systems Using Mascot-SDS -- References -- Automated Tail Bound
Analysis for Probabilistic Recurrence Relations -- 1 Introduction -- 2
Preliminaries -- 2.1 Probabilistic Recurrence Relations -- 3 Exponential
Tail Bounds via Markov's Inequality -- 4 An Algorithmic Approach --
4.1 The Guess Procedure Guess(f,t) -- 4.2 The Check Procedure
CheckCond(cf,ct) -- 5 Experimental Results -- 6 Related Work --



References -- Compositional Probabilistic Model Checking with String
Diagrams of MDPs -- 1 Introduction -- 2 String Diagrams of MDPs --
2.1 Outline -- 2.2 Open MDPs -- 2.3 Rightward Open MDPs and Traced
Monoidal String Diagrams -- 2.4 TSMC Equations Between roMDPs --
2.5 Open MDPs and “"Compact Closed" String Diagrams -- 3
Decomposition Equalities for Open Markov Chains -- 4 Semantic
Categories and Solution Functors -- 4.1 Semantic Category for
Rightward Open MCs -- 4.2 Semantic Category of Rightward Open
MDPs -- 4.3 Semantic Category of MDPs -- 5 Implementation and
Experiments -- References -- Efficient Sensitivity Analysis for
Parametric Robust Markov Chains -- 1 Introduction -- 2 Overview -- 3
Formal Problem Statement -- 4 Differentiating Solution Functions for
pMCs -- 4.1 Computing Derivatives Explicitly -- 4.2 Computing k-
Highest Derivatives -- 5 Differentiating Solution Functions for prMCs.
5.1 Computing Derivatives via pMCs (and When It Does Not Work) --
5.2 Computing Derivatives Explicitly -- 5.3 Computing k-Highest
Derivatives -- 6 Numerical Experiments -- 7 Related Work -- 8
Concluding Remarks -- References -- MDPs as Distribution
Transformers: Affine Invariant Synthesis for Safety Objectives -- 1
Introduction -- 1.1 Related Work -- 2 Preliminaries -- 2.1 Markov
Systems -- 2.2 MDPs as Distribution Transformers -- 3 Problem
Statement and Examples -- 4 Proving Safety by Invariants -- 4.1
Distribution Strategies -- 4.2 Distributional Invariants for MDP Safety
-- 5 Algorithms for Distributional Invariant Synthesis -- 5.1 Synthesis
of Affine Invariants and Memoryless Strategies -- 5.2 Synthesis of
Affine Invariants and General Strategies -- 6 Discussion, Extensions,
and Variants -- 7 Implementation and Evaluation -- 8 Conclusion --
References -- Search and Explore: Symbiotic Policy Synthesis in
POMDPs -- 1 Introduction -- 2 Motivating Examples -- 3 Preliminaries
and Problem Statement -- 4 FSCs for and from Belief Exploration -- 4.1
Belief Exploration with Explicit FSC Construction -- 4.2 Using FSCs for
Cut-Off Values -- 4.3 Extracting FSC from Belief Exploration -- 5
Accelerated Inductive Synthesis -- 5.1 Inductive Synthesis with k-FSCs
-- 5.2 Using Reference Policies to Accelerate Inductive Synthesis -- 5.3
Inductive Synthesis with Adequate FSCs -- 6 Integrating Belief
Exploration with Inductive Synthesis -- 7 Experiments -- 8 Conclusion
and Future Work -- References -- Security and Quantum Systems --
AutoQ: An Automata-Based Quantum Circuit Verifier -- 1 Introduction
-- 2 Tree Automata-Based Verification of Quantum Circuits -- 2.1
High-Level Specification Language -- 2.2 Complex Number
Representation -- 2.3 Precise Semantics of the Specification -- 3
Entailment Checking -- 4 Architecture -- 5 Use Cases.

5.1 Hadamard Square is Identity -- 5.2 Zero Imaginary Part of
Amplitudes -- 5.3 Probability of Measuring the Correct Answer -- 5.4
Increasing Amplitude of the Correct Answer -- 6 Conclusion --
References -- Bounded Verification for Finite-Field-Blasting -- 1
Introduction -- 1.1 Related Work -- 2 Background -- 2.1 Logic -- 2.2
Zero Knowledge Proofs -- 2.3 Compilation Targeting Zero Knowledge
Proofs -- 3 Overview and Example -- 3.1 An Example of Field-Blasting
-- 3.2 Key Ideas -- 4 Architecture -- 4.1 Encodings -- 4.2 Encoding
Rules -- 4.3 Calculus -- 5 Verification Conditions -- 5.1 Correctness
Definition -- 5.2 Rule VCs -- 5.3 A Correct Field-Blasting Calculus -- 6
Case Study: A Verifiable Field-Blaster for CirC -- 6.1 Verification
Evaluation -- 6.2 Performance and Output Quality Evaluation -- 7
Discussion -- A Zero-Knowledge Proofs and Compilers -- B Compiler
Correctness Proofs -- C CirC-IR -- D Optimizations to the CirC Field-
Blaster -- E Verified Field-Blaster Performance Detalils -- F Verifier
Performance Details -- G Bugs Found in the CirC Field Blaster --



References -- Formally Verified EVM Block-Optimizations -- 1
Introduction -- 2 Background -- 3 EVM Semantics in Coq -- 4 Formal
Verification of EVM-Optimizations in Coq -- 4.1 EVM Symbolic
Execution in Coq -- 4.2 Simplification Rules -- 4.3 Stacks Equivalence
Modulo Commutativity -- 5 Implementation and Experimental
Evaluation -- 6 Conclusions, Related and Future Work -- References --
SR-SFLL: Structurally Robust Stripped Functionality Logic Locking -- 1
Introduction -- 2 Background -- 2.1 Stripped Functionality Logic
Locking (SFLL) -- 2.2 SFLL Attacks -- 2.3 Analysis of the Structural
Attacks on SFLL -- 3 Overview -- 3.1 Preliminaries -- 3.2 Approach --
4 SR-SFLL -- 4.1 Problem Statement -- 4.2 Intuition: SR-SFLL -- 4.3
Methodology: SR-SFLL -- 5 SyntAk -- 6 Evaluation.

6.1 Robustness of SR-SELL(0) and SR-SELL on Existing Attacks -- 6.2
Robustness of SR-SELL(0) and SR-SELL on SyntAk -- 6.3 Overhead of
SR-SELL(0) and SR-SELL -- 7 Related Work -- 8 Conclusions --
References -- Symbolic Quantum Simulation with Quasimodo -- 1
Introduction -- 2 Background on Quantum Simulation -- 3
Quasimodo's Programming and Analysis Interface -- 3.1 Extending
Quasimodo -- 4 The Internals of Quasimodo -- 5 Experiments -- 6
Conclusion -- References -- Verifying the Verifier: eBPF Range Analysis
Verification -- 1 Introduction -- 2 Background on Abstract

Interpretation -- 3 Abstract Interpretation in the Linux Kernel -- 4
Automatic Verification of the Kernel's Algorithms -- 4.1 Soundness
Specification for Abstraction/Reduction Operators -- 4.2 Refining
Soundness Specification with Input Preconditioning -- 4.3
Automatically Producing Programs Exercising Soundness Bugs -- 5 C to
Logic for Kernel's Abstract Operators -- 6 Experimental Evaluation -- 7
Limitations and Caveats -- 8 Related Work -- 9 Conclusion --
References -- Software Verification -- Automated Verification of
Correctness for Masked Arithmetic Programs -- 1 Introduction -- 2
Preliminaries -- 3 The Core Language -- 4 Overview of the Approach
-- 4.1 Our Approach -- 5 Term Rewriting System -- 6 Algorithmic
Verification -- 6.1 Term Normalization Algorithm -- 6.2 Computing
Affine Constants -- 6.3 Verification Algorithm -- 6.4 Implementation
Remarks -- 7 Evaluation -- 7.1 Evaluation for Computing Affine
Constants -- 7.2 Evaluation for Correctness Verification -- 7.3
Scalability of FISCHER -- 7.4 Evaluation for More Boolean Masking
Schemes -- 7.5 Evaluation for Arithmetic/Boolean Masking Conversions
-- 8 Conclusion -- References -- Automatic Program Instrumentation
for Automatic Verification -- 1 Introduction -- 2 Instrumentation
Framework -- 2.1 The Core Language.

2.2 Instrumentation Operators -- 2.3 Instrumentation Correctness -- 3
Instrumentation Application Strategies -- 4 Instrumentation Operators
for Arrays -- 4.1 Instrumentation Operators for Quantification over
Arrays -- 4.2 Instrumentation Operators for Aggregation over Arrays --
5 Evaluation -- 5.1 Implementation -- 5.2 Experiments and
Comparisons -- 6 Related Work -- 7 Conclusion -- References --
Boolean Abstractions for Realizability Modulo Theories -- 1
Introduction -- 2 Preliminaries -- 3 Boolean Abstraction -- 3.1

Notation -- 3.2 The Boolean Abstraction Algorithm -- 3.3 From Local
Simulation to Equi-Realizability -- 4 Efficient Algorithms for Boolean
Abstraction -- 4.1 Quasi-reactions -- 4.2 Quasi-reaction-based
Optimizations -- 4.3 A Single Model-Loop Algorithm (Algorithm 2) --
4.4 A Nested-SAT Algorithm (Algorithm 3) -- 5 Empirical Evaluation --
6 Related Work and Conclusions -- References -- Certified Verification
for Algebraic Abstraction -- 1 Introduction -- 2 Preliminaries -- 3
ToyLang -- 3.1 Syntax and Semantics -- 4 Algebraic Abstraction -- 4.1
Soundness Conditions -- 4.2 Polynomial Program Verification -- 5



Sommario/riassunto

Certified Verification -- 5.1 Verified Abstraction Algorithm -- 5.2
Verification through Certification -- 5.3 Optimization -- 6 Evaluation
-- 6.1 Field and Group Operation in Elliptic Curves -- 6.2 Number-
Theoretic Transform in Kyber -- 7 Conclusion -- References --
Complete Multiparty Session Type Projection with Automata -- 1
Introduction -- 2 Motivation and Overview -- 3 Preliminaries -- 4
Synthesizing Implementations -- 5 Checking Implementability -- 6
Soundness -- 7 Completeness -- 8 Complexity -- 9 Evaluation -- 10
Discussion -- 11 Related Work -- References -- Early Verification of
Legal Compliance via Bounded Satisfiability Checking -- 1 Introduction
-- 2 Preliminaries -- 3 Bounded Satisfiability Checking Problem.

4 Checking Bounded Satisfiability.

The open access proceedings set LNCS 13964, 13965, 13966
constitutes the refereed proceedings of the 35th International
Conference on Computer Aided Verification, CAV 2023, which was held
in Paris, France, in July 2023.



