

1. Record Nr.	UNIORUON00211954
Autore	KISELEV, S.V.
Titolo	Drevnjaja istorija Južnoj Sibiri / S.V. Kiselev
Pubbl/distr/stampa	Moskva, : Akademija Nauk SSSR, 1951
Descrizione fisica	642 p. : tav. ; 26 cm.
Soggetti	SIBERIA - Storia
Lingua di pubblicazione	Russo
Formato	Materiale a stampa
Livello bibliografico	Monografia
2. Record Nr.	UNINA9910734093103321
Autore	Nguyen-Schafer Hung
Titolo	Aero and vibroacoustics of automotive turbochargers / / Hung Nguyen-Schafer
Pubbl/distr/stampa	New York, : Springer, 2013
ISBN	9783642350702 3642350704 9781299197879 1299197876
Edizione	[1st ed. 2013.]
Descrizione fisica	1 online resource (xv, 136 pages) : illustrations (some color)
Collana	Gale eBooks
Disciplina	620 620.2 621.4361 621.8/2
Soggetti	Automobiles - Motors - Superchargers
Lingua di pubblicazione	Inglese
Formato	Materiale a stampa
Livello bibliografico	Monografia
Note generali	Description based upon print version of record.
Nota di bibliografia	Includes bibliographical references and index.
Nota di contenuto	Introduction to Turbocharging -- Induced Noise Types -- Acoustic

Sommario/riassunto

Aero and Vibroacoustics of Automotive Turbochargers is a topic involving aspects from the working fields of thermodynamics of turbomachinery, aerodynamics, rotordynamics, and noise propagation computation. In this broadly interdisciplinary subject, thermodynamics of turbomachinery is used to design the turbocharger and to determine its operating conditions. Aerodynamics is needed to study the compressor flow dynamics and flow instabilities of rotating stall and surge, which can produce growling and whining-type noises. Rotordynamics is necessary to study rotor unbalance and self-excited oil-whirl instabilities, which lead to whistling and constant tone-type noises in rotating floating oil-film type bearings. For the special case of turbochargers using ball bearings, some high-order harmonic and wear noises also manifest in the rotor operating range. Lastly, noise propagation computation, based on Lighthill's analogy, is required to investigate airborne noises produced by turbochargers in passenger vehicles. The content of this book is intended for advanced undergraduates, graduates in mechanical engineering, research scientists and practicing engineers who want to better understand the interactions between these working fields and the resulting impact on the interesting topic of Aero and Vibroacoustics of Automotive Turbochargers.
