1. Record Nr. UNINA9910731486203321

Autore Zhang Liwei

Titolo Corrosion in CO2 Capture, Transportation, Geological Utilization and

Storage [[electronic resource]]: Causes and Mitigation Strategies //

edited by Liwei Zhang

Pubbl/distr/stampa Singapore:,: Springer Nature Singapore:,: Imprint: Springer,, 2023

ISBN 981-9923-92-1

Edizione [1st ed. 2023.]

Descrizione fisica 1 online resource (136 pages)

Collana Engineering Materials, , 1868-1212

Disciplina 620.11223

Soggetti Corrosion and anti-corrosives

Cogeneration of electric power and heat

Fossil fuels Coatings

Environmental chemistry

Energy policy Energy and state Power resources

Corrosion Fossil Fuel

Environmental Chemistry

Energy Policy, Economics and Management Natural Resource and Energy Economics

Lingua di pubblicazione Inglese

Formato Materiale a stampa

Livello bibliografico Monografia

Nota di contenuto Background -- Corrosion theory and characterization techniques --

Corrosion in CO2 capture and transportation -- Corrosion in CO2 geological utilization and storage -- Impact of corrosion on wellbore stability -- Corrosion control (I): Corrosion-resistant steel and cement -- Corrosion control (II): Anti-corrosion coating -- Corrosion control

(III): Corrosion inhibitors.

Sommario/riassunto This book systematically discusses the operational stages with high risk

of CO2-induced corrosion in CCUS projects, and related measures for corrosion control. CO2 capture, utilization, and storage (CCUS) is a key

technology to mitigate climate change and substantially reduce greenhouse gas emissions from fossil fuels. CCUS deals with high concentration CO2, which is very corrosive in a humid environment. Therefore, it is very important to characterize, monitor, and mitigate CO2-induced corrosion in all processes of the CCUS operation chain. Some corrosion control techniques included in this book (e.g., CO2-resisting wellbore cement additives) are beneficial for corrosion control research and engineering practices. This book belongs to the field of corrosion science and engineering, and the expected readership is researchers and engineers working on CCUS.