Record Nr. UNINA9910726278203321

Autore Bianchi Giovanni

Titolo A Numerical Tool for the Analysis of Bioinspired Aquatic Locomotion / /

by Giovanni Bianchi

Pubbl/distr/stampa Cham:,: Springer Nature Switzerland:,: Imprint: Springer,, 2023

ISBN 9783031305481

9783031305474

Edizione [1st ed. 2023.]

Descrizione fisica 1 online resource (84 pages)

Collana PoliMI SpringerBriefs, , 2282-2585

Disciplina 623.827

Soggetti Bionics

Biomedical engineering

Biomechanics Fluid mechanics Biophysics

Bioinspired Technologies

Biomechanical Analysis and Modeling

Engineering Fluid Dynamics

Lingua di pubblicazione Inglese

Formato Materiale a stampa

Livello bibliografico Monografia

Nota di contenuto Introduction and state of the art -- Hydrodynamics of swimming --

Model of cownose ray locomotion -- Wake structure and swimming

performance of the cownose ray.

Sommario/riassunto This book presents a novel method for the numerical simulation of

swimming animals. It includes a review of the hydrodynamics of swimming, a description of the CFD model adopted, and a description of the results obtained by applying this model to the cownose ray. This method is developed for the open-source software OpenFOAM and relies on an overset mesh. A custom library is added to the solver to include the equations of the kinematics of the animal under investigation, combining the deformation of the fish fins with the computed displacement and rotation of the animal's body. The

presented method helps investigate the dynamics of any animal moving in a fluid, provided that its kinematics is known, and in this work, it is

applied to investigate the hydrodynamics of a cownose ray. This book is intended for researchers and engineers who aim to deeply understand the hydrodynamics of fish swimming and to design bioinspired autonomous underwater vehicles or novel propulsion systems.