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This volume collects the lecture notes of the school TiME2019
(Treasures in Mathematical Encounters). The aim of this book is
manifold, it intends to overview the wide topic of algebraic curves and
surfaces (also with a view to higher dimensional varieties) from
different aspects: the historical development that led to the theory of
algebraic surfaces and the classification theorem of algebraic surfaces
by Castelnuovo and Enriques; the use of such a classical geometric
approach, as the one introduced by Castelnuovo, to study linear
systems of hypersurfaces; and the algebraic methods used to find
implicit equations of parametrized algebraic curves and surfaces,
ranging from classical elimination theory to more modern tools
involving syzygy theory and Castelnuovo-Mumford regularity. Since our
subject has a long and venerable history, this book cannot cover all the
details of this broad topic, theory and applications, but it is meant to
serve as a guide for both young mathematicians to approach the
subject from a classical and yet computational perspective, and for
experienced researchers as a valuable source for recent applications.


