1.	Record Nr.	UNINA9910711167503321
	Autore	Prasad Kuldeep
	Titolo	Greenhouse gas emissions and dispersion : 3. reducing uncertainty in estimating source strangth and location through plume inversion models / / Kuldeep Prasad; Adam Pintar; Heming Hu; Israel Lopez-Coto; Dennis Ngo; James R. Whetstone
	Pubbl/distr/stampa	Gaithersburg, MD : , : U.S. Dept. of Commerce, National Institute of Standards and Technology, , 2015
	Descrizione fisica	1 online resource (28 pages) : illustrations (color)
	Collana	NIST special publication ; ; 1175
	Altri autori (Persone)	HuHeming Lopez-Cotolsrael NgoDennis PintarAdam PrasadKuldeep WhetstoneJames R
	Soggetti	Greenhouse gas emissions Quality control
	Lingua di pubblicazione	Inglese
	Formato	Materiale a stampa
	Livello bibliografico	Monografia
	Note generali	Contributed record: Metadata reviewed, not verified. Some fields updated by batch processes. September 2015.
		Title from PDF title page (viewed September 30, 2015).
	Nota di bibliografia	Includes bibliographical references.
	Sommario/riassunto	Recent development of accurate instruments for measuring greenhouse gas concentrations and the ability to mount them in ground-based vehicles has provided an opportunity to make temporally and spatially resolved measurements in the vicinity of suspected source locations, and for subsequently estimating the source location and strength.^The basic approach of using downwind atmospheric measurements in an inversion methodology to predict the source strength and location is an ill-posed problem and results in large uncertainty.^In this report, we present a new measurement methodology for reducing the uncertainty in predicting source strength from downwind measurements associated

with inverse modeling. In order to demonstrate the approach, an inversion methodology built around a plume dispersion model is developed.^Synthetic data derived from an assumed source distribution is used to compare and contrast the predicted source strength and location.^AThe effect of introducing various levels of noise in the synthetic data or uncertainty in meteorological variables on the inversion methodology is studied.^AResults indicate that the use of noisy measurement data had a small effect on the total predicted source strength, but gave rise to several spurious sources (in many cases 8-10 sources were detected, while the assumed source distribution only consisted of 2 sources).^Use of noisy measurement data for inversion also introduced large uncertainty in the location of the predicted sources.^A mathematical model for estimating an upper bound on the uncertainty, and a bootstrap statistical approach for determining the variability in the predicted source distribution is demonstrated.^AThe new measurement methodology, which involves using measurement data from two or more wind directions, combined together as part of a single inversion process is presented.^Results of the bootstrap process indicated that the uncertainty in locating sources reduced significantly when measurements are made using the new proposed measurement approach. A The proposed measurement system can be significant in determining emission inventories in urban domains at a high level of reliability, and for studying the role of remediation measures.