Record Nr. UNINA9910674025103321

Autore Ogliari Emanuele

Titolo Computational Intelligence in Photovoltaic Systems / Emanuele Ogliari,

Sonia Leva

Pubbl/distr/stampa MDPI - Multidisciplinary Digital Publishing Institute, 2019

Basel, Switzerland:,: MDPI,, 2019

ISBN 9783039210992

3039210998

Descrizione fisica 1 electronic resource (180 p.)

Soggetti History of engineering and technology

Lingua di pubblicazione Inglese

Formato Materiale a stampa

Livello bibliografico Monografia

Sommario/riassunto Photovoltaics, among the different renewable energy sources (RES), has

become more popular. In recent years, however, many research topics have arisen as a result of the problems that are constantly faced in smart-grid and microgrid operations, such as forecasting of the output of power plant production, storage sizing, modeling, and control optimization of photovoltaic systems. Computational intelligence algorithms (evolutionary optimization, neural networks, fuzzy logic, etc.) have become more and more popular as alternative approaches to conventional techniques for solving problems such as modeling, identification, optimization, availability prediction, forecasting, sizing, and control of stand-alone, grid-connected, and hybrid photovoltaic systems. This Special Issue will investigate the most recent

developments and research on solar power systems. This Special Issue "Computational Intelligence in Photovoltaic Systems" is highly recommended for readers with an interest in the various aspects of solar power systems, and includes 10 original research papers severing

solar power systems, and includes 10 original research papers covering relevant progress in the following (non-exhaustive) fields: Forecasting techniques (deterministic, stochastic, etc.); DC/AC converter control and maximum power point tracking techniques; Sizing and

optimization of photovoltaic system components; Photovoltaics

modeling and parameter estimation; Maintenance and reliability modeling; Decision processes for grid operators.