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Spray polymerisation has a long time been discussed as a promising
process, yet, with little knowledge on cause-and-effect relationships
between drying and chemical reactions. This work develops a new
single droplet model of combined solution drying and free radical
homopolymerisation, based on the method of moments. New,
consistent approaches for moments' diffusion and the reaction-
diffusion system are derived to ensure conservation. Simulations reveal
peculiarities of the process such as that, due to drying, polymerisation
happens mostly in bulk and monomer evaporation leads to a poor
yield. Various process variants and simulation models are discussed.
The impact of process parameters is examined by means of numerical
DoEs. The second part presents a novel approach for the simulation of
structure evolution in suspension drying. The meshfree SPH method is
used to model the relevant physical effects on a detailed scale during
the first and second drying period. New implementations of physical
effects are derived: heat and mass transfer based on linear driving
forces, an implicit solution of the heat equation, several approaches for
crust formation and a new formulation of surface tension by pairwise
forces. The formation of dense structures as well as hollow granules
can be simulated. Model parameters influence crust formation during
the second drying period concerning shape and microporosity and can
be interpreted in a physical sense.


