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The mechanical properties of cells are largely determined by the
cytoskeleton. The cytoskeleton is an intricate and complex structure
formed by protein filaments, motor proteins, and crosslinkers. The
three main types of protein filaments are microtubules, actin filaments,
and intermediate filaments ( IFs ). Whereas the proteins that form
microtubules and actin filaments are exceptionally conserved
throughout cell types and organisms, the family of IFs is diverse. For
example, the IF protein vimentin is expressed in relatively motile
fibroblasts, and keratin IFs are found in epithelial cells. This variety of
IF proteins might therefore be linked to the various mechanical
properties of different cell types. In the scope of this thesis, | combine



studies of IF mechanics on different time scales and in systems of
increasing complexity, from single filaments to networks in cells. This
multiscale approach allows for the simplification necessary to interpret
observations while adding increasing physiological context in
subsequent experiments. We especially focus on the tunability of the IF
mechanics by environmental cues in these increasingly complex
systems. In a series of experiments, including single filament

elongation studies, single filament stretching measurements with

optical tweezers, filament-filament interaction measurements with four
optical tweezers, microrheology, and isotropic cell stretching, we
characterize how electrostatic (pH and ion concentration) and
hydrophobic interactions (detergent) provide various mechanisms by
which the mechanics of the IF cytoskeleton can be tuned. These studies
reveal how small changes, such as charge shifts, influence IF mechanics
on multiple scales. In combination with simulations, we determine the
mechanisms by which charge shifts alter single vimentin filament
mechanics and we extract energy landscapes for interactions between
single filaments. Such insights will provide a deeper understanding of
the mechanisms by which cells can maintain their integrity and adapt to
the mechanical requirements set by their environment.
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