

|                         |                                                                                                                                    |
|-------------------------|------------------------------------------------------------------------------------------------------------------------------------|
| 1. Record Nr.           | UNISALENT0991001831259707536                                                                                                       |
| Autore                  | Bauman, Richard Alexander                                                                                                          |
| Titolo                  | Crime and punishment in ancient Rome / Richard A. Bauman                                                                           |
| Pubbl/distr/stampa      | London ; New York : Routledge, c1996                                                                                               |
| ISBN                    | 041511375X                                                                                                                         |
| Descrizione fisica      | xii, 228 p. ; 23 cm.                                                                                                               |
| Classificazione         | R-IV/A                                                                                                                             |
| Disciplina              | 345.009376                                                                                                                         |
| Soggetti                | Diritto romano penale<br>Processo romano                                                                                           |
| Lingua di pubblicazione | Inglese                                                                                                                            |
| Formato                 | Materiale a stampa                                                                                                                 |
| Livello bibliografico   | Monografia                                                                                                                         |
| 2. Record Nr.           | UNINA9910557337103321                                                                                                              |
| Autore                  | Seo TaeWon                                                                                                                         |
| Titolo                  | Advances in Bio-Inspired Robots                                                                                                    |
| Pubbl/distr/stampa      | Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021                                                  |
| Descrizione fisica      | 1 online resource (156 p.)                                                                                                         |
| Soggetti                | Technology: general issues                                                                                                         |
| Lingua di pubblicazione | Inglese                                                                                                                            |
| Formato                 | Materiale a stampa                                                                                                                 |
| Livello bibliografico   | Monografia                                                                                                                         |
| Sommario/riassunto      | This book covers three major topics, specifically Biomimetic Robot Design, Mechanical System Design from Bio-Inspiration, and Bio- |

Inspired Analysis on A Mechanical System. The Biomimetic Robot Design part introduces research on flexible jumping robots, snake robots, and small flying robots, while the Mechanical System Design from Bio-Inspiration part introduces Bioinspired Divide-and-Conquer Design Methodology, Modular Cable-Driven Human-Like Robotic Arm and Wall-Climbing Robot. Finally, in the Bio-Inspired Analysis on A Mechanical System part, research contents on the control strategy of Surgical Assistant Robot, modeling of Underwater Thruster, and optimization of Humanoid Robot are introduced.

---