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Sommario/riassunto This book proposes tools for analysis of multidimensional and metric
data, by establishing a state-of-the-art of the existing solutions and
developing new ones. It mainly focuses on visual exploration of these
data by a human analyst, relying on a 2D or 3D scatter plot display
obtained through Dimensionality Reduction (DR). Performing diagnosis
of an energy system requires identifying relations between observed
monitoring variables and the associated internal state of the system.
Dimensionality reduction, which allows to represent visually a
multidimensional dataset, constitutes a promising tool to help domain
experts to analyse these relations. This book reviews existing
techniques for visual data exploration and dimensionality reduction,
and proposes new solutions to challenges in that field. In order to
perform diagnosis of energy systems, domain experts need to establish
relations between the possible states of a given system and the
measurement of a set of monitoring variables. Classical dimensionality
reduction techniques such as tSNE and Isomap are presented, as well as
the new unsupervised technigue ASKI and the supervised methods
ClassNeRV and ClassJSE. A new approach, MING for local map quality
evaluation, is also introduced. These methods are then applied to the
representation of expert-designed fault indicators for smart-buildings,
I-V curves for photovoltaic systems and acoustic signals for Li-ion
batteries.



