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Do schools work differently in deprived and privileged
neighbourhoods? As segregation is on the rise in many cities, this book
explores how different neighbourhood contexts shape public
organisations, by using an innovative approach that combines a
Bourdieusian perspective and new institutional theory. Based on
interviews and ethnographic data from two primary schools in Berlin,
Germany, it shows how local social compositions, symbolic meanings
of urban areas, and neighbourhood-based policy interventions
structure schools. Educational professionals adapt to these structural
differences. The book analyses how teachers’ understandings and
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reproduction of urban inequality. Contents Neighbourhoods, Schools
and Inequality: Shifting the Focus A Theoretical Perspective: Localised
Fields, Organisational Habitus and Practices How Neighbourhoods
Shape Schools-as-Fields: Social, Symbolic, and Administrative
Differences How Educational Professionals Adapt: Localised
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Students and lectors of urban sociology, urban studies, sociology of
education and geography of education Policy makers, professionals and
administrators in the educational field The Author Julia Nast holds a
Joint PhD in Sociology from Humboldt-Universität zu Berlin and King’s
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The purpose of the book is to discuss the latest advances in the theory
of unitary representations and harmonic analysis for solvable Lie
groups. The orbit method created by Kirillov is the most powerful tool
to build the ground frame of these theories. Many problems are studied
in the nilpotent case, but several obstacles arise when encompassing
exponentially solvable settings. The book offers the most recent
solutions to a number of open questions that arose over the last
decades, presents the newest related results, and offers an alluring
platform for progressing in this research area. The book is unique in
the literature for which the readership extends to graduate students,
researchers, and beginners in the fields of harmonic analysis on
solvable homogeneous spaces.


