
UNINA99104847054033211. Record Nr.

Titolo Improving the quality of ABAP code : striving for perfection / / Paul
David Hardy

Pubbl/distr/stampa [Place of publication not identified] : , : Apress, , [2021]
©2021

ISBN 1-4842-6711-7

Descrizione fisica 1 online resource (526 pages)

Disciplina 005.133

Soggetti ABAP/4 (Computer program language)

Lingua di pubblicazione Inglese

Formato

Livello bibliografico

Nota di contenuto Intro -- Table of Contents -- About the Author -- About the Technical
Reviewer -- Acknowledgments -- Introduction -- Chapter 1: Why
Object-Oriented Programming Is a Must for Code Quality -- Why OO
Has Never Taken Off in ABAP World -- OO Benefits: The Theory --
Describing OO Programs: UML -- Describing OO Programs: BON --
Seamlessness/Reversibility -- Seamlessness via an Automated Tool --
Seamlessness via Naming Conventions -- Design by Contract -- Design
by Unit Tests -- Designing a Worldwide OO Program -- What Is
the Existing System State? -- Why Is the Existing System State Not
Portable? -- What Can Be Done About Fixing That Problem? -- Breaking
Dependencies in General -- Breaking Dependencies via Packages --
Breaking Dependencies via Interfaces -- What Is an Interface in OO
Terms? -- How SAP Uses Interfaces to Manage User Exits -- Not
Breaking the System -- My Journey to OO Happiness -- OO Happiness:
The Theory -- The Clean Coder -- Clean Code -- Head-First Design
Patterns -- More on Design Patterns -- OO Happiness: The Reality --
Writing an Interactive Executable Report in OO -- Writing a DYNPRO
Program in OO -- Experiment -- Rewriting a Huge, Business-Critical
Program in OO -- Slowly Transforming a Huge, Business-Critical
Program to OO -- OO Benefits: The Reality -- Soft Benefits -- Design
Thinking -- Ease of Maintenance -- No One Goes Back -- Hard Benefits
-- Avoidance of Syntax Errors -- Parameter Handling -- IMPORTING --
EXPORTING -- TABLES -- RETURNING -- OPTIONAL -- NAMES -- TYPES

Autore Hardy Paul David

Materiale a stampa

Monografia



-- FORMULAS -- Reuse -- Making Code Testable -- Conclusion --
Recommended Reading -- Articles -- Books -- Chapter 2: Why Test-
Driven Development Is a Must for Code Quality -- TDD Theory --
Fragile Code -- Legacy Code -- Automated Regression Tests --
Dependencies and How to Break Them -- The TDD Development Cycle:
RED/GREEN/BLUE -- My Journey to TDD Happiness.
Testing After the Event -- Testing Before the Event -- TDD Workflow
in Eclipse -- Creating Test Doubles -- Creating a New Test Method --
Coding the Test Method -- Coding the THEN Method -- Coding
the GIVEN Method -- Coding the WHEN Method -- Writing
the Production Code -- The BLUE Phase -- Does This Actually Give
You a Benefit? -- From a Gut Feeling . . . -- . . . to a Concrete Example
-- Some Unit Tests Might Seem Pointless . . . -- It's Too Short to Test
-- It's Too Simple to Test -- . . . but They Are Not! -- Message
in a Model -- You Can't Get There from Here -- Simpler but Wrong --
Why TDD Has Never Taken Off -- I Already Have an Automated Testing
Framework -- My Program Is Too Complicated for TDD -- My Program
Is Too Simple for TDD -- TDD Is Far Too Expensive -- TDD Reduces
Development Costs -- TDD Reduces the Cost of Fixing Bugs -- TDD
Reduces the Financial Risk of Failure -- Conclusion -- Recommended
Reading -- Chapter 3: Clarity: The First Pillar of Code Quality --
Refactoring: Automated and Manual Checks -- Automated Checks --
Syntax Check -- Extended Program Check -- Code Inspector -- ABAP
Open Checks -- Code Pal -- Remote ATC Checks -- Continuous
Integration -- Manual Checks -- Clean ABAP -- ABAP Gore -- Creating
a Personalized Checklist -- Code Complexity -- Huge Routines --
Confusing Code -- Double Negatives -- Text Symbols -- Pointless
Variables -- Contradictory Instructions -- END-OF-SELECTION --
DATA Declarations -- Unrelated Tasks -- Not Being Able to Locate
a Routine -- Duplicate Code -- Global Variables -- Why Are Global
Variables Bad? -- What Can You Do About Global Variables? -- Global
Variables Versus Member Variables -- Naming -- Method/Routine
Naming -- Misleading Names -- Totally Incorrect Names -- Sloppy
Naming -- Parameter Naming -- Named Parameters -- Functional
Methods -- Variable Naming -- Hungarian Notation.
Prefixes in an OO Context -- Random Naming Conventions --
Misleading Names -- Very Old Programs -- Inline Declarations -- Self-
Documenting -- German Acronyms -- Magic Numbers -- Hard Coding
-- Constants -- Redundant Constants -- Meaningless Constants --
How Not to Use Constants -- ABAP Data Dictionary Object Naming --
Tables -- Transaction Codes -- Structures -- Indexes -- Program
Names -- CDS Views -- How Correct Naming Enables Reuse --
Comments -- Why, Not How -- Quotation Marks Versus Asterisks --
Meaningless Comments -- Incorrect Comments -- Reference Numbers
in Comments -- Comments Going for a Walk -- Commented-Out Code
-- It Makes the Program Harder to Follow -- It Causes Short Dumps --
It Doesn't Always Work -- It Should Be Deleted -- Documentation --
Conclusion -- Recommended Reading -- Chapter 4: Stability:
The Second Pillar of Code Quality -- Principle of Least Astonishment --
Enhancement Category -- Material Substitution -- Data Declarations
in Modules -- Hashed Tables -- Incorrectly Typed RETURNING
Parameter -- Programming by Accident -- Wrong Code That Works --
Incorrect Behavior Being Viewed as Correct -- Archaic ABAP Statements
-- Strange Data Declarations -- Implicit Work Area -- What Do You Do?
-- Don't Repeat Yourself -- Time/Difficulty -- Before the Event -- After
the Event -- Riskiness -- Surgeon Example -- Drill-Down Example --
Text Names Example -- Payer Example -- Avoiding Repetition in OO
Programming -- Other Common Causes of Instability -- Global



Variables -- Cannon Example -- Half-Dog Half-Cat Example --
Function Modules -- Cross-Program Calls -- Table-Based Work Areas
-- Parameters -- Importing Parameters -- Exporting Parameters --
Fully Typed Parameters -- Big Trouble with Big Signatures -- Memory
Problems -- Dealing with Instability: Using Code -- Problems That
Virtually Always Happen -- Fuzzy Searches -- Spreadsheets.
Problems That Are Likely to Happen -- SY-SUBRC -- BAPIs -- BDCs --
Field Symbols -- Problems That Really Shouldn't Happen -- Self-Repair:
Example 1 -- Self-Repair: Example 2 -- Problems That Should Never,
Ever Happen -- Spotting the Impossible -- Dealing with the Impossible
-- Dealing with Instability: Using Humans -- What's Wrong #1 --
What's Wrong #2 -- Conclusion -- Recommended Reading -- Chapter
5: Performance: The Third Pillar of Code Quality -- CPO Concept --
Daily Dumps -- Annual In-House CPO -- Static Checks -- Geometric
Loops -- Secondary Indexes for Internal Tables -- Runtime Checks --
ST05 in General -- Identical SELECTS -- How to Spot the Problem --
Strategies to Deal with the Problem -- Real-Life Example -- Stuttering
-- Asking Stupid Questions -- Reading More Data Than Needed --
Selecting More Columns Than You Need -- Selecting More Rows Than
You Need -- The Behavior Never Made Sense -- The Behavior No
Longer Makes Sense -- The Behavior Makes Sense -- Existence Checks
-- Multiple Reads on the Same Table -- Contract Example -- Partner
Function Example -- Shipment Cost Example -- Using FOR ALL
ENTRIES -- Indexes -- Indexes: Always Using One -- Indexes: Missing
the First Field -- Indexes: SKIP SCAN -- Nested SELECTs -- "Bad" Joins
on Database Tables -- Postmortem Checks -- Standard SAP
Transactions for Troubleshooting Performance Problems -- SAT --
ST04 -- SRTCM -- Technical Attributes of Database Tables -- Indexes
-- Pointless Index -- Terrible Index -- Really Good Index -- Buffering
-- Possible Buffering Settings -- Example of How Buffering Can Help --
Common Misconception About Generic Buffering -- How to Decide
Which Z Tables to Buffer -- Postmortem Tricks -- Batch Jobs --
Deadlocks -- Sneaky Tricks -- Database Reads in a Loop -- Using
Standard SAP "Buffering" Modules -- When to Use Them --
KNA1_SINGLE_READER -- Prefilling Buffers.
Constants -- INTO CORRESPONDING -- DDIC Information -- Using
Standard SAP Functions Incorrectly -- Conclusion -- Chapter 6: User
Friendliness: Ensuring UI Quality -- General Philosophy -- Difference
Between UI and UX -- Don't Make Me Think -- Waterfall Projects --
Consistency -- Standards -- Applying Industry Standards -- Non-
Standard Icon Appearance -- Non-Standard Icon Usage --
Inconsistency -- Inconsistency in F4 Helps -- Inconsistency in Pop-Ups
-- Inconsistency in Master Data Transactions -- Ease of Use -- Laying
Traps for the User -- Hiding Icons for No Reason -- Hiding Fields
for No Reason -- Slightly Hidden Field -- Totally Hidden Field --
Incorrect Use of Check Boxes -- Confusing the User -- Giving Incorrect
Options -- Giving No Options at All -- Accessibility -- Explaining
Things to the User -- Avoiding Abbreviations -- Custom Data Elements
-- Custom F1 Help -- Custom Domains -- Error Prevention -- Inviting
Errors -- Self-Destruct Button -- Stopping Dumps Before They Begin --
Self-Service -- Logging -- Linking Errors to Training Material --
Sneaky Trick: ALV Filter Not Working -- Error Handling -- Shouting
at the User -- Preventing the User from Fixing the Problem -- Making
the User Reenter Data -- Making It Impossible to Fix the Problem --
Enabling the User to Fix the Problem -- Mandatory Fields -- Taking
the User to the Source of the Problem -- Example: IDoc Application Log
-- Documentation -- Documentation Guidelines -- Documentation
Terminology -- Documentation for Dialog Transactions --



Documentation for Developers -- Conclusion -- Recommended
Reading -- Chapter 7: User Exits: Defusing a Potential Time Bomb --
User Exits in On-Premises SAP Systems -- VOFM Routines -- Repairs
-- FORM-Based User Exits -- CMOD User Exits -- BAdi User Exits --
The Enhancement Framework -- User Exits in Your Own Z Programs --
User Exits in Cloud SAP Systems.
UI Extensibility.


