

1. Record Nr.	UNINA9910484328803321
Titolo	Energy-Based Seismic Engineering : Proceedings of IWEBSE 2021 // edited by Amadeo Benavent-Climent, Fabrizio Mollaioli
Pubbl/distr/stampa	Cham : , : Springer International Publishing : , : Imprint : Springer, , 2021
ISBN	3-030-73932-5
Edizione	[1st ed. 2021.]
Descrizione fisica	1 online resource (312 pages)
Collana	Lecture Notes in Civil Engineering, , 2366-2565 ; ; 155
Disciplina	624.1762
Soggetti	Fire prevention Buildings - Protection Geotechnical engineering Engineering geology Fire Science, Hazard Control, Building Safety Geotechnical Engineering and Applied Earth Sciences Geoengineering
Lingua di pubblicazione	Inglese
Formato	Materiale a stampa
Livello bibliografico	Monografia
Nota di contenuto	Intro -- Contents -- Assessment of Plastic Energy Demand Spectra on Frame Systems -- 1 Introduction -- 2 Plastic Energy Based Demand -- 3 Explanation of Frame System and Ground Motions -- 3.1 Frame System -- 3.2 Ground Motion Selection and Scaling -- 4 Plastic Energy Calculations -- 5 Conclusion -- References -- Effects of Pre-existing Damage on Fragility of URM and RC Frame Buildings -- 1 Introduction -- 2 Structural Modeling of Case Study Buildings -- 3 Damage State Definition -- 4 Ground Motion Database -- 5 Development of Damage Dependent Fragility Curves -- 6 Conclusions -- References -- Energy Dissipation Capacity of RC Columns Subjected to Dynamic Biaxial Seismic Loadings on a Shake Table -- 1 Introduction -- 2 Experimental Study -- 2.1 Description of the Overall Test Specimen and Set-Up -- 2.2 Detailed Description of the Columns Investigated -- 2.3 Seismic Simulations -- 3 Results and Discussion -- 3.1 Overall Test Results -- 3.2 Force and Displacement Demand -- 3.3 Park and Ang Index of Damage -- 3.4 Energy Dissipation Capacity -- 4 Conclusions --

References -- Spatial Distribution of Hysteretic Energy in Reinforced Concrete Moment Resisting Frames -- 1 Introduction -- 2 Energy-Based Seismic Response -- 3 Code-Compliant RC MRF Buildings -- 3.1 Seismic Design of the RC Frame Buildings -- 3.2 Numerical Modeling of the RC Frame Buildings -- 4 Dynamic Analyses Applied to the Model Frames -- 5 Energy-Based Results from Dynamic Analyses -- 5.1 Story-Wise Distribution of Hysteretic Energy -- 5.2 Member-Wise Distribution of Hysteretic Energy -- 6 Conclusions -- References -- Reinforced Concrete Columns: Insight on Energy-Based Assessment from Biaxial Tests with Different Load Paths -- 1 Introduction -- 2 Brief Illustration of Tests Carried Out -- 3 Results and Discussion -- 4 Conclusions -- References.

Evaluation of Different Approaches to Estimate Seismic Input Energy and Top Displacement Demand of Moment Resisting Frames -- 1 Introduction -- 2 Numerical Models -- 2.1 Selected Benchmark Frames -- 2.2 Ground Motion Selection -- 2.3 Nonlinear Time History Analyses -- 3 Seismic Demand Estimations -- 3.1 Prediction of the Seismic Input Energy -- 3.2 Prediction of the Top Displacement -- 4 Conclusions -- References -- NDSHA-A Reliable Modern Approach for Alternative Seismic Input Modelling -- 1 Introduction -- 2 The Seismic Demand and the Energy-Based Concept -- 3 The Neo-deterministic Seismic Hazard Assessment (NDSHA) Approach -- 3.1 Regional Scale Analyses -- 3.2 Site Specific Analysis -- 3.3 NDSHA and PBSD Concept -- 4 Conclusive Remarks -- References -- A Review on Performance-Based Plastic Design Method: Concept and Recent Developments -- 1 Introduction -- 2 PBPD Concept -- 3 Lateral Force and Story Strength Distribution -- 4 Cumulative Energy Dissipation and Damage -- 5 Non-EPP Systems -- 6 PBPD Example -- 7 Conclusions -- References -- Effect of Kinematic Hardening and Ductility Ratio on Inelastic Input Energy Spectra of Near-Fault Ground Motions -- 1 Introduction -- 2 Input Energy Spectrum -- 2.1 Basic Concepts -- 2.2 Construction of Input Energy Spectrum -- 3 Considered SDOF Systems and Hysteresis Models -- 4 Near-Fault GM Dataset -- 5 Results and Discussion -- 6 Conclusions -- References -- Least-Square Effective Stiffness to be Used for Equivalent Linear Model -- 1 Introduction -- 2 Proposed Method for the Identification -- 2.1 Energy Ratio for a Linear Mass-Spring-Damper Oscillator -- 2.2 Estimation of the Stiffness by a Least-Square (LS) Approach -- 2.3 Proposed Procedure for the Identification Method -- 3 Example of Prediction Error Study for the Proposed Equivalent Stiffness and Damping.

3.1 Analytical Hysteretic Model for the Input Force-Displacement Cycle -- 3.2 Computation of the Steady-State Response for a Harmonic Excitation -- 3.3 Parametric Study of the Prediction Error -- 4 Conclusions -- References -- Key Points and Pending Issues in the Energy-Based Seismic Design Approach -- 1 Introduction -- 2 Input Energy and Maximum Displacement Demands -- 3 Energy Dissipation Capacity -- 4 Conclusions -- References -- A Damage Index for the Seismic Evaluation of Buckling-Restrained Braces -- 1 Introduction -- 2 Experimental Program -- 2.1 Tested BRB Specimens -- 2.2 Loading Protocols -- 2.3 Testing Results -- 3 Proposed Damage Index Concept -- 3.1 Tested BRB Specimens -- 4 Discussion on Earthquake Response -- 4.1 Analyzed Braced-Frame Building Structure -- 4.2 Input Earthquake Motions -- 4.3 Damage Index Calculation -- 5 Concluding Remarks -- References -- An Energy-Based Prediction of Deformation Demand on Low- to Mid-Rise R/C Buildings with Hysteretic Dampers -- 1 Introduction -- 2 Frame Building Models -- 2.1 R/C Frame System -- 2.2 3-D R/C Frame Conversion into an Equivalent SDOF System -- 2.3 Damper System -- 3

Earthquake Response Analysis -- 3.1 Input Earthquake Motions -- 3.2 Nonlinear Dynamic Analysis -- 4 Prediction of Deformation Demand -- 4.1 Evaluation of Factor -- 4.2 Simplified Prediction -- 5 Concluding Remarks -- References -- Energy-Based Topology Optimization Under Stochastic Seismic Ground Motion: Preliminary Framework -- 1 Introduction -- 2 Topology Optimization Under Deterministic Loading Conditions -- 2.1 Optimum Design Under Deterministic Static Loads -- 2.2 Optimum Design Under Deterministic Seismic Ground Motion -- 3 Topology Optimization Under Stochastic Seismic Ground Motion -- 3.1 Stochastic Seismic Ground Motion Modeling -- 3.2 Covariance Analysis -- 3.3 Optimum Design Under Stochastic Seismic Loads. 3.4 Optimization Problem -- 4 Computational Aspects -- 4.1 Topology Design via Solid Isotropic Material with Penalization -- 4.2 Analytical Evaluation of the Gradient -- 5 Case Study -- 6 Conclusions -- References -- Energy-Based Seismic Design Method for Coupled CLT Shear Walls -- 1 Introduction -- 1.1 Background -- 1.2 Rocking CLT Wall Structures -- 1.3 Modified HSK Connectors -- 1.4 Proposed Coupled CLT Shear Walls -- 2 Energy-Based Design of Coupled CLT Walls -- 2.1 Proposed EBD Method -- 2.2 Estimation of Lateral Force-Deformation Relations -- 2.3 Hysteretic Energy Demand -- 2.4 Formulation of Story-Wise Energy Balance -- 2.5 Design of Capacity-Protected Components -- 3 Conclusion -- References -- Energy-Based Design Process for Passive Control Structures Considering Torsional Effect -- 1 Introduction -- 2 Literature Review -- 3 Response Characteristics of Structures with Dampers Without Torsional Effect -- 3.1 Damage Distribution Between the Frame and Dampers -- 3.2 Story Damage Distribution of the Dampers -- 4 Response Characteristics of Structures with Dampers Considering the Torsional Effect -- 4.1 Torsional Effect of the Structure Considering the Eccentricity of the Dampers -- 4.2 Damage Distribution Between the Frame and Dampers Considering the Torsional Effect -- 4.3 Story Damage Distribution of the Dampers Considering the Torsional Effect -- 4.4 Distribution of Story Shear Force in the Dampers Considering the Torsional Effect -- 5 Suggestion of Energy-Based Design Procedure for Structures with Damping System Considering the Torsional Effect -- 6 Conclusions -- References -- Efficiency of Viscous Damping in Seismic Energy Dissipation and Response Reduction -- 1 Introduction -- 2 Strong Ground Motions -- 3 Sensitivity of Damping Efficiency to Strong Motions Characteristics -- 3.1 Fault Type -- 3.2 Magnitude -- 3.3 Fault Distance. 3.4 Soil Type -- 3.5 Concluding Remarks on the Influence of Ground Motion Parameters -- 4 Sensitivity of Damping Efficiency to Viscous Damping Ratio -- 5 Discussion of Results -- 6 Summary and Conclusions -- References -- Vector-Valued Intensity Measures to Predict Peak and Hysteretic Energy Demands of 3D R/C Buildings -- 1 Introduction -- 2 Methodology -- 2.1 Vector-Valued Ground Motion Intensity Measures -- 2.2 Structural 3D Reinforced Concrete Frames Models -- 2.3 Earthquake Ground Motion Records -- 2.4 Scaling of Seismic Records -- 2.5 Performance Parameters -- 3 Numerical Results -- 3.1 Relation Between Vector-Valued IMs and the Structural Demand of 3D R/C Frames -- 3.2 Optimization of the Np Parameter -- 3.3 Efficiency of Selected Vector-Valued Ground Motion IMs -- 4 Conclusions -- References -- Evaluation of Earthquake Resistance of Steel Moment Resisting Frames -- 1 Introduction -- 2 Hysteretic Model of Steel Members Subjected to Random Loading Histories -- 2.1 Hysteretic Rule of Steel Members Under Random Cyclic Loading -- 2.2 Calibration of the Hysteresis Model -- 3 Response Analysis on Steel MRFs Based on the Realistic Behaviors of Members -- 3.1 Outline

of the Analysis -- 3.2 Ultimate Earthquake Resistance of Steel MRFs Determined by Deterioration and Losing Restoring of Members Due to Local Buckling [1, 2] -- 3.3 Effect of Stiffness and Strength of the Exposed-Type Column-Bases on the Ultimate Earthquake Resistance of MRF [3-5] -- 3.4 Seismic Performance of MRFs Subjected to Multiple Strong Ground Motions [16, 17] -- 4 Conclusion -- References -- Energy-Based Design Theory for Self-Centering Structures -- 1 Introduction -- 2 Energy-Based Design Theory -- 2.1 Energy-Dissipation Mechanism Design for Self-Centering Structures -- 2.2 Transformation of EH in EBDTs -- 2.3 Quantification of EH. 2.4 Performance Objectives for Self-Centering Systems.

Sommario/riassunto

This volume gathers the latest advances, innovations, and applications in the field of seismic engineering, as presented by leading researchers and engineers at the 1st International Workshop on Energy-Based Seismic Engineering (IWEBSE), held in Madrid, Spain, on May 24-26, 2021. The contributions cover a diverse range of topics, including energy-based EDPs, damage potential of ground motion, structural modeling in energy-based damage assessment of structures, energy dissipation demand on structural components, innovative structures with energy dissipation systems or seismic isolation, as well as seismic design and analysis. Selected by means of a rigorous peer-review process, they will spur novel research directions and foster future multidisciplinary collaborations.
