Autore Zhivov Alexander M. Titolo Deep energy retroft - a guide for decision makers // Alexander Zhivov, Rudiger Lobese Pubbl/distr/stampa Cham, Switzerland : , : EBC : , : Springer, , [2021] (ESDN 3-030-66211-X Edizione [1st ed. 2021.] Descrizione fisica 1 online resource (XXI, 84 p. 22 illus., 19 illus. in color.) Collana SpringerBriefs in applied sciences and technology Disciplina 696 Soggetti Buildings - Energy conservation Lingu di pubblicazione Inglese Formato Materiale a stampa Livello bibliografico Monografia Nota di contenuto Chapter 1. Introduction Chapter 2. Deep Energy Retrofit In Public Buildings Chapter 3. What Is Deep Energy Retrofit In Public Buildings Chapter 1. Sugore Process Chapter 1. Chapter 4. Deep Energy Retrofit Chapter 4. Deep Energy Retrofit Chapter 4. Deep Energy Retrofit Chapter 1. Conclusions Chapter 1. Throw To Make Der Cost Effective? Chapter 1. Conclusions References Acronyms and Abbreviations. Sommario/riassunto Many governments worldwide are setting more stringent targets for reductions in energy use in government/public buildings. Suidings constructed more than 10 years ago account for a major share of energy used by the building stock. However, the funding and "know-how" (applied knowledge) available for owner-directed energy retrofit proje		01111/10010100021
TitoloDeep energy retrofit - a guide for decision makers // Alexander Zhivov, Rudiger LohsePubbl/distr/stampaCham, Switzerland : , : EBC : , : Springer, , [2021] (©2021ISBN3-030-66211-XEdizione[1st ed. 2021.]Descrizione fisica1 online resource (XXI, 84 p. 22 illus., 19 illus. in color.)CollanaSpringerBriefs in applied sciences and technologyDisciplina696SoggettiBuildings - Energy conservationLingua di pubblicazioneIngleseFormatoMateriale a stampaLivello bibliograficoMonografiaNota di contenutoChapter 1. Introduction Chapter 2. Deep Energy Retrofit In Public Buildings Chapter 3. What Is Deep Energy Retrofit In Public Buildings Chapter 3. What Is Deep Energy Retrofit - Chapter 4. Deep Energy Retrofit vs Shallow Renovation - Chapter 5. Najor Renovation And Deep Energy Retrofit - Chapter 6. Product Delivery Quality Assurace Process Acnapter 7. How To Make Der Cost Effective? Chapter 10. Lessons Learned From Pilot Projects Chapter 11. Conclusions References Acronyms and Abbreviations.Sommario/riassuntoMany governments worldwide are setting more stringen are of energy used by the building stock. However, the funding and "know- how" (applied knowledge) available for owner-directed energy vertofit projects, reduction of energy use varies between 10 and 20%, while actual executed renovation projects show that energy use reduction can exceed 50%, and can cost-effectively achieve the Passive House standard or even approach net zero-energy status (EBC Annex 61 2017, A Hermelink and Müller 2010, NBI 2014, RICS 2013, Shonder and Nasseri 2015, Willer and Higgins 2015; Emmerich et al. 2011,	Autore	Zhivov Alexander M.
Pubbl/distr/stampa Cham, Switzerland : , : EBC : , : Springer, , [2021] @2021 ISBN 3-030-66211-X Edizione [1st ed. 2021.] Descrizione fisica 1 online resource (XXI, 84 p. 22 illus., 19 illus. in color.) Collana SpringerBriefs in applied sciences and technology Disciplina 696 Soggetti Buildings - Energy conservation Lingua di pubblicazione Inglese Formato Materiale a stampa Livello bibliografico Monografia Nota di contenuto Chapter 1. Introduction Chapter 2. Deep Energy Retrofit In Public Buildings Chapter 4. Deep Energy Retrofit vs Shallow Renovation Chapter 5. Major Renovation And Deep Energy Retrofit vs Shallow Renovation Chapter 5. Major Renovation And Deep Energy Retrofit vs Shallow Renovation Chapter 9. Der Financing Chapter 11. Conclusions Chapter 7. How To Make Der Cost Effective? Chapter 11. Conclusions References Acronyms and Abbreviations. Sommario/riassunto Many governmenty worldwide are setting more stringent targets for reductions in energy use in government/public buildings. Buildings constructed more than 10 years ago account for a major share of energy use reduction of energy use varies between 10 and 20%, while actual executed renovation projects show that energy use reduction can exceed 50%, and can cost-effectively achieve the Passive House standard or even approach net zero-energy status (EBC Annex 61 2017a, Hermelink and Müller 2010, NBI 2014; RICS 2013; Shonder and Nasser	Titolo	Deep energy retrofit - a guide for decision makers / / Alexander Zhivov, Rudiger Lohse
ISBN3-030-66211-XEdizione[1st ed. 2021.]Descrizione fisica1 online resource (XXI, 84 p. 22 illus., 19 illus. in color.)CollanaSpringerBriefs in applied sciences and technologyDisciplina696SoggettiBuildings - Energy conservationLingua di pubblicazioneIngleseFormatoMateriale a stampaLivello bibliograficoMonografiaNota di contenutoChapter 1. Introduction Chapter 2. Deep Energy Retrofit In Public Buildings Chapter 3. What Is Deep Energy Retrofit? Chapter 4. Deep Energy Retrofit vs Shallow Renovation Chapter 5. Major Renovation And Deep Energy Retrofit Chapter 4. Deep Energy Retrofit vs Shallow Renovation Chapter 5. Product Delivery Quality Assurance Process Chapter 7. How To Make Der Cost Effective? Chapter 10. Lessons Learned From Pilot Pojects Chapter 11. Conclusions References Acronyms and Abbreviations.Sommario/riassuntoMany governments worldwide are setting more stringent targets for reductions in energy use in government/public buildings. Buildings constructed more than 10 years ago account for a major share of energy used by the building stock. However, the funding and "know- how" (applied knowledge) available for owner-directed energy retrofit projects, reduction of energy use varies between 10 and 20%, while actual executed renovation projects show that energy use foldien y use varies between 10 and 20%, while actual executed renovation projects show that energy use foldien y use varies between 10 and 20%, while actual executed renovation projects show that energy use foldien y use varies between 10 and 20%, while actual executed renovation projects show that energy use foldien y use varies between 10	Pubbl/distr/stampa	Cham, Switzerland : , : EBC : , : Springer, , [2021] ©2021
Edizione[1st ed. 2021.]Descrizione fisica1 online resource (XXI, 84 p. 22 illus., 19 illus. in color.)CollanaSpringerBriefs in applied sciences and technologyDisciplina696SoggettiBuildings - Energy conservationLingua di pubblicazioneIngleseFormatoMateriale a stampaLivello bibliograficoMonografiaNota di contenutoChapter 1. Introduction Chapter 2. Deep Energy Retrofit In Public Buildings Chapter 3. What Is Deep Energy Retrofit Chapter 4. Deep Energy Retrofit vs Shallow Renovation Chapter 5. Major Renovation And Deep Energy Retrofit Chapter 6. Product Delivery 	ISBN	3-030-66211-X
Descrizione fisica1 online resource (XXI, 84 p. 22 illus., 19 illus. in color.)CollanaSpringerBriefs in applied sciences and technologyDisciplina696SoggettiBuildings - Energy conservationLingua di pubblicazioneIngleseFormatoMateriale a stampaLivello bibliograficoMonografiaNota di contenutoChapter 1. Introduction Chapter 2. Deep Energy Retrofit In Public Buildings Chapter 3. What Is Deep Energy Retrofit Chapter 4. Deep Energy Retrofit vs Shallow Renovation Chapter 5. Major Renovation And Deep Energy Retrofit Chapter 6. Product Delivery Quality Assurance Process Chapter 7. How To Make Der Cost Effective? Chapter 10. Lessons Learned From Pilot Projects Chapter 11. Conclusions References Acronyms and Abbreviations.Sommario/riassuntoMany governments worldwide are setting more stringent targets for reductions in energy use in government/public buildings. Suidilings constructed more than 10 years ago account for a major share of energy used by the building stock. However, the funding and "know- how" (applied knowledge) available for owner-directed energy retrofit projects, reduction of energy use aires between 10 and 20%, while actual executed renovation projects show that energy use reduction can exceed 50%, and can cost-effectively achieve the Passive House standard or even approach net zero-energy status (EBC Annex 61 2017a, Hermelink and Müller 2010; NBI 2014; RICS 2013; Shonder and Nasseri 2015; Miller and Higgins 2015; Emmerch et al. 2011). Building energy efficiency potential with a total resource benefit of approximately \$700 billion	Edizione	[1st ed. 2021.]
CollanaSpringerBriefs in applied sciences and technologyDisciplina696SoggettiBuildings - Energy conservationLingua di pubblicazioneIngleseFormatoMateriale a stampaLivello bibliograficoMonografiaNota di contenutoChapter 1. Introduction Chapter 2. Deep Energy Retrofit In Public Buildings Chapter 3. What Is Deep Energy Retrofit? Chapter 4. Deep Energy Retrofit vs Shallow Renovation Chapter 5. Major Renovation And Deep Energy Retrofit Chapter 6. Product Delivery Quality Assurance Process Chapter 7. How To Make Der Cost Effective? Chapter 10. Lessons Learned From Pilot Projects Chapter 11. Conclusions References Acronyms and Abbreviations.Sommario/riassuntoMany governments worldwide are setting more stringent targets for reductions in energy use in government/public buildings constructed more than 10 years ago account for a major share of energy used by the building stock. However, the funding and "know- how" (applied knowledge) available for owner-directed energy retrofit projects has not keept pace with new requirements. With typical retrofit projects standard or even approach net zero-energy status (EBC Annex 61 2017a, Hermelink and Müller 2010; NBI 2014; RICS 2013; Shonder and Nasseri 2015; Miller and Hügins 2015; Emmerich et al. 2011. Building energy efficiency (EE) ranks first in approaches with resource efficiency potential with a total resource benefit of approximately \$700 billion	Descrizione fisica	1 online resource (XXI, 84 p. 22 illus., 19 illus. in color.)
Disciplina696SoggettiBuildings - Energy conservationLingua di pubblicazioneIngleseFormatoMateriale a stampaLivello bibliograficoMonografiaNota di contenutoChapter 1. Introduction Chapter 2. Deep Energy Retrofit In Public Buildings Chapter 3. What Is Deep Energy Retrofit ? Chapter 4. Deep Energy Retrofit vs Shallow Renovation Chapter 5. Major Renovation And Deep Energy Retrofit Chapter 6. Product Delivery Quality Assurance Process Chapter 7. How To Make Der Cost Effective? Chapter 8. Business Models For Der Chapter 9. Der Financing Chapter 10. Lessons Learned From Pilot Projects Chapter 11. Conclusions References Acronyms and Abbreviations.Sommario/riassuntoMany governments worldwide are setting more stringent targets for reductions in energy use in government/public buildings. Buildings constructed more than 10 years ago account for a major share of energy used by the building stock. However, the funding and "know- how" (applied knowledge) available for owner-directed energy retrofit projects has not kept pace with new requirements. With typical retrofit projects, reduction of energy use varies between 10 and 20%, while actual executed renovation projects show that energy use reduction can exceed 50%, and can cost-effectively achieve the Passive House standard or even approach net zero-energy status (EBC Annex 61 2017a, Hermelink and Müller 2010; NBI 2014; RICS 2013; Shonder and Nasseri 2015; Miller and Higgins 2015; Emmerich et al. 2011). Building energy efficiency (EE) ranks first in approaches with resource efficiency potential with a total resource benefit of approximately \$700 billion	Collana	SpringerBriefs in applied sciences and technology
SoggettiBuildings - Energy conservationLingua di pubblicazioneIngleseFormatoMateriale a stampaLivello bibliograficoMonografiaNota di contenutoChapter 1. Introduction Chapter 2. Deep Energy Retrofit In Public Buildings Chapter 3. What Is Deep Energy Retrofit? Chapter 4. Deep Energy Retrofit vs Shallow Renovation Chapter 5. Major Renovation And Deep Energy Retrofit Chapter 6. Product Delivery Quality Assurance Process Chapter 7. How To Make Der Cost Effective? Chapter 8. Business Models For Der Chapter 9. Der Financing Chapter 10. Lessons Learned From Pilot Projects Chapter 11. Conclusions References Acronyms and Abbreviations.Sommario/riassuntoMany governments worldwide are setting more stringent targets for reductions in energy use in government/public buildings. Buildings constructed more than 10 years ago account for a major share of energy used by the building stock. However, the funding and "know- how" (applied knowledge) available for owner-directed energy retrofit projects, reduction of energy use varies between 10 and 20%, while actual executed renovation projects show that energy user House standard or even approach net zero-energy status (EBC Annex 61 2017a, Hermelink and Müller 2010; NBI 2014; RICS 2013; Shonder and Nasseri 2015; Miller and Higgins 2015; Emmerich et al. 2011). Building energy ential with a total resource benefit of approximately \$700 billion	Disciplina	696
Lingua di pubblicazioneIngleseFormatoMateriale a stampaLivello bibliograficoMonografiaNota di contenutoChapter 1. Introduction Chapter 2. Deep Energy Retrofit In Public Buildings Chapter 3. What Is Deep Energy Retrofit? Chapter 4. Deep Energy Retrofit vs Shallow Renovation Chapter 5. Major Renovation And Deep Energy Retrofit Chapter 6. Product Delivery Quality Assurance Process Chapter 7. How To Make Der Cost Effective? Chapter 8. Business Models For Der Chapter 9. Der Financing Chapter 10. Lessons Learned From Pilot Projects Chapter 11. Conclusions References Acronyms and Abbreviations.Sommario/riassuntoMany governments worldwide are setting more stringent targets for reductions in energy use in government/public buildings. Buildings constructed more than 10 years ago account for a major share of energy used by the building stock. However, the funding and "know- how" (applied knowledge) available for owner-directed energy retrofit projects, reduction of energy use varies between 10 and 20%, while actual executed renovation projects show that energy use reduction can exceed 50%, and can cost-effectively achieve the Passive House standard or even approach net zero-energy status (EBC Annex 61 2017a, Hermelink and Müller 2010; NBI 2014; RICS 2013; Shonder and Nasseri 2015; Miller and Higgins 2015; Emmerich et al. 2011). Building energy efficiency (EE) ranks first in approaches with resource efficiency potential with a total resource benefit of approximately \$700 billion	Soggetti	Buildings - Energy conservation
FormatoMateriale a stampaLivello bibliograficoMonografiaNota di contenutoChapter 1. Introduction Chapter 2. Deep Energy Retrofit In Public Buildings Chapter 3. What Is Deep Energy Retrofit? Chapter 4. Deep Energy Retrofit vs Shallow Renovation Chapter 5. Major Renovation And Deep Energy Retrofit Chapter 6. Product Delivery Quality Assurance Process Chapter 7. How To Make Der Cost Effective? Chapter 8. Business Models For Der Chapter 9. Der Financing Chapter 10. Lessons Learned From Pilot Projects Chapter 11. Conclusions References Acronyms and Abbreviations.Sommario/riassuntoMany governments worldwide are setting more stringent targets for reductions in energy use in government/public buildings. Buildings constructed more than 10 years ago account for a major share of energy used by the building stock. However, the funding and "know- how" (applied knowledge) available for owner-directed energy retrofit projects, reduction of energy use varies between 10 and 20%, while actual executed renovation projects show that energy use reduction can exceed 50%, and can cost-effectively achieve the Passive House standard or even approach net zero-energy status (EBC Annex 61 2017a, Hermelink and Müller 2010; NBI 2014; RICS 2013; Shonder and Nasseri 2015; Miller and Higgins 2015; Emmerich et al. 2011). Building energy efficiency (EE) ranks first in approaches with resource efficiency potential with a total resource benefit of approximately \$700 billion	Lingua di pubblicazione	Inglese
Livello bibliograficoMonografiaNota di contenutoChapter 1. Introduction Chapter 2. Deep Energy Retrofit In Public Buildings Chapter 3. What Is Deep Energy Retrofit ? Chapter 4. Deep Energy Retrofit vs Shallow Renovation Chapter 5. Major Renovation And Deep Energy Retrofit Chapter 6. Product Delivery Quality Assurance Process Chapter 7. How To Make Der Cost Effective? Chapter 8. Business Models For Der Chapter 9. Der Financing Chapter 10. Lessons Learned From Pilot Projects Chapter 11. Conclusions References Acronyms and Abbreviations.Sommario/riassuntoMany governments worldwide are setting more stringent targets for reductions in energy use in government/public buildings. Buildings constructed more than 10 years ago account for a major share of energy used by the building stock. However, the funding and "know- how" (applied knowledge) available for owner-directed energy retrofit projects has not kept pace with new requirements. With typical retrofit projects, reduction of energy use varies between 10 and 20%, while actual executed renovation projects show that energy use reduction can exceed 50%, and can cost-effectively achieve the Passive House standard or even approach net zero-energy staus (EBC Annex 61 2017a, Hermelink and Müller 2010; NBI 2014; RICS 2013; Shonder and Nasseri 2015; Miller and Higgins 2015; Emmerich et al. 2011). Building energy efficiency (EE) ranks first in approaches with resource efficiency potential with a total resource benefit of approximately \$700 billion	Formato	Materiale a stampa
Nota di contenutoChapter 1. Introduction Chapter 2. Deep Energy Retrofit In Public Buildings Chapter 3. What Is Deep Energy Retrofit? Chapter 4. Deep Energy Retrofit vs Shallow Renovation Chapter 5. Major Renovation And Deep Energy Retrofit Chapter 6. Product Delivery Quality Assurance Process Chapter 7. How To Make Der Cost Effective? Chapter 8. Business Models For Der Chapter 9. Der Financing Chapter 10. Lessons Learned From Pilot Projects Chapter 11. Conclusions References Acronyms and Abbreviations.Sommario/riassuntoMany governments worldwide are setting more stringent targets for reductions in energy use in government/public buildings. Buildings constructed more than 10 years ago account for a major share of energy used by the building stock. However, the funding and "know- how" (applied knowledge) available for owner-directed energy retrofit projects, reduction of energy use varies between 10 and 20%, while actual executed renovation projects show that energy use reduction can exceed 50%, and can cost-effectively achieve the Passive House standard or even approach net zero-energy status (EBC Annex 61 2017a, Hermelink and Müller 2010; NBI 2014; RICS 2013; Shonder and Nasseri 2015; Miller and Higgins 2015; Emmerich et al. 2011). Building energy efficiency (EE) ranks first in approaches with resource efficiency potential with a total resource benefit of approximately \$700 billion	Livello bibliografico	Monografia
Sommario/riassunto Many governments worldwide are setting more stringent targets for reductions in energy use in government/public buildings. Buildings constructed more than 10 years ago account for a major share of energy used by the building stock. However, the funding and "knowhow" (applied knowledge) available for owner-directed energy retrofit projects has not kept pace with new requirements. With typical retrofit projects, reduction of energy use varies between 10 and 20%, while actual executed renovation projects show that energy use reduction can exceed 50%, and can cost-effectively achieve the Passive House standard or even approach net zero-energy status (EBC Annex 61 2017a, Hermelink and Müller 2010; NBI 2014; RICS 2013; Shonder and Nasseri 2015; Miller and Higgins 2015; Emmerich et al. 2011). Building energy efficiency (EE) ranks first in approaches with resource efficiency potential with a total resource benefit of approximately \$700 billion	Nota di contenuto	Chapter 1. Introduction Chapter 2. Deep Energy Retrofit In Public Buildings Chapter 3. What Is Deep Energy Retrofit? Chapter 4. Deep Energy Retrofit vs Shallow Renovation Chapter 5. Major
		Quality Assurance Process Chapter 7. How To Make Der Cost Effective? Chapter 8. Business Models For Der Chapter 9. Der Financing Chapter 10. Lessons Learned From Pilot Projects Chapter 11. Conclusions References Acronyms and Abbreviations.

1.

until 2030. EE is by far the cheapest way to cut CO2 emissions (McKinsey 2011, IPCC 2007). However, according to an IEA study (IEA 2014a), more than 80% of savings potential in building sector remains untapped. Thus, the share of deployed EE in the building sector is lower than in the Industry, Transport, and Energy generation sectors. Estimates for the deep renovation potentials show: €600-900bn investment potential, €1000-1300bn savings potential, 70% energysaving potential, and 90% CO2 reduction potential.