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On the subject of differential equations many elementary books have
been written. This book bridges the gap between elementary courses
and research literature. The basic concepts necessary to study
differential equations - critical points and equilibrium, periodic
solutions, invariant sets and invariant manifolds - are discussed first.
Stability theory is then developed starting with linearisation methods
going back to Lyapunov and Poincaré. In the last four chapters more



advanced topics like relaxation oscillations, bifurcation theory, chaos in
mappings and differential equations, Hamiltonian systems are
introduced, leading up to the frontiers of current research: thus the
reader can start to work on open research problems, after studying this
book. This new edition contains an extensive analysis of fractal sets
with dynamical aspects like the correlation- and information

dimension. In Hamiltonian systems, topics like Birkhoff normal forms
and the Poincaré-Birkhoff theorem on periodic solutions have been
added. There are now 6 appendices with new material on invariant
manifolds, bifurcation of strongly nonlinear self-excited systems and
normal forms of Hamiltonian systems. The subject material is
presented from both the qualitative and the quantitative point of view,
and is illustrated by many examples.



