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The subject of partial differential equations holds an exciting and
special position in mathematics. Partial differential equations were not
consciously created as a subject but emerged in the 18th century as
ordinary differential equations failed to describe the physical principles
being studied. The subject was originally developed by the major
names of mathematics, in particular, Leonard Euler and Joseph-Louis
Lagrange who studied waves on strings; Daniel Bernoulli and Euler who
considered potential theory, with later developments by Adrien-Marie
Legendre and Pierre-Simon Laplace; and Joseph Fourier's famous work
on series expansions for the heat equation. Many of the greatest
advances in modern science have been based on discovering the
underlying partial differential equation for the process in question. J
ames Clerk Maxwell, for example, put electricity and magnetism into a
unified theory by estab­ lishing Maxwell's equations for
electromagnetic theory, which gave solutions for problems in radio
wave propagation, the diffraction of light and X-ray developments.
Schrodinger's equation for quantum mechankal processes at the atomic
level leads to experimentally verifiable results which have changed the
face of atomic physics and chemistry in the 20th century. In fluid
mechanics, the Navier-Stokes' equations form a basis for huge
number-crunching activities associated with such widely disparate
topics as weather forcasting and the design of supersonic aircraft.
Inevitably the study of partial differential equations is a large
undertaking, and falls into several areas of mathematics.


