
UNINA99104642063033211. Record Nr.

Titolo Learn you some Erlang for great good! [[electronic resource] ] : a
beginner's guide / / Fred Hebert ; [foreword by Joe Armstrong]

Pubbl/distr/stampa San Francisco, : No Starch Press, 2013

ISBN 1-59327-504-8

Descrizione fisica 1 online resource (627 p.)

Disciplina 005.13/3

Soggetti ERLANG (Computer program language)
Electronic books.

Lingua di pubblicazione Inglese

Formato

Edizione [1st edition]

Livello bibliografico

Note generali First printing.
Includes index.

Nota di contenuto Intro -- Learn You Some Erlang For Great Good! -- Foreword -- Preface
-- To the Foreigner -- To the Erlang Regular -- To the Person Who Has
Read This Online -- Acknowledgments -- Introduction -- So What's
Erlang? -- Don't Drink Too Much Kool-Aid -- What You Need to Dive In
-- Where to Get Help -- 1. Starting Out -- Using the Erlang Shell --
Entering Shell Commands -- Exiting the Shell -- Some Erlang Basics --
Numbers -- Invariable Variables -- Atoms -- Boolean Algebra and
Comparison Operators -- Tuples -- Lists -- List Comprehensions --
Working with Binary Data -- Bit Syntax -- Bitwise Binary Operations --
Binary Strings -- Binary Comprehensions -- 2. Modules -- What Are
Modules? -- Creating Modules -- Compiling Code -- Compiler Options
-- Defining Macros -- More About Modules -- Metadata -- Circular
Dependencies -- 3. Syntax in Functions -- Pattern Matching -- Fancier
Patterns -- Variables in a Bind -- Guards, Guards! -- What the If ?! --
In case ... of -- Which Should We Use? -- 4. Types (or Lack Thereof) --
Dynamite-Strong Typing -- Type Conversions -- To Guard a Data Type
-- For Type Junkies -- 5. Hello Recursion! -- How Recursion Works --
Length of a List -- Length of a Tail Recursion -- More Recursive
Functions -- A Duplicate Function -- A Reverse Function -- A Sublist
Function -- A Zip Function -- Quick, Sort! -- More Than Lists --
Thinking Recursively -- 6. Higher-Order Functions -- Let's Get
Functional -- Anonymous Functions -- More Anonymous Function

Autore Hebert Fred <1988->

Materiale a stampa

Monografia



Power -- Function Scope and Closures -- Maps, Filters, Folds, and
More -- Filters -- Fold Everything -- More Abstractions -- 7. Errors
and Exceptions -- A Compilation of Errors -- Compile-Time Errors --
No, YOUR Logic Is Wrong! -- Runtime Errors -- Function Clause Errors
-- Case Clause Errors -- If Clause Errors -- Bad Match Errors -- Bad
Argument Errors -- Undefined Function Errors.
Bad Arithmetic Errors -- Bad Function Errors -- Bad Arity Errors --
System Limit Errors -- Raising Exceptions -- Error Exceptions -- When
Not to Use Errors -- Custom Errors -- Exit Exceptions -- Throw
Exceptions -- Dealing with Exceptions -- Handling Different Types of
Exceptions -- After the Catch -- Trying Multiple Expressions -- Wait,
There's More! -- Try a try in a Tree -- 8. Functionally Solving Problems
-- Reverse Polish Notation Calculator -- How RPN Calculators Work --
Creating an RPN Calculator -- Testing the Code -- Heathrow to London
-- Solving the Problem Recursively -- Writing the Code -- Running the
Program Without the Erlang Shell -- 9. A Short Visit to Common Data
Structures -- Records -- Defining Records -- Reading Values from
Records -- Updating Records -- Sharing Records -- Key/Value Stores
-- Stores for Small Amounts of Data -- Proplists -- Orddicts -- Larger
Dictionaries: Dicts and GB Trees -- A Set of Sets -- Directed Graphs --
Queues -- End of the Short Visit -- 10. The Hitchhiker's Guide to
Concurrency -- Don't Panic -- Concurrency Concepts -- Scalability --
Fault Tolerance -- Concurrency Implementation -- Not Entirely Unlike
Linear Scaling -- So Long and Thanks for All the Fish! -- Spawning
Processes -- Sending Messages -- Receiving Messages -- 11. More on
Multiprocessing -- State Your State -- We Love Messages, But We Keep
Them Secret -- Time Out -- Selective Receives -- The Pitfalls of
Selective Receives -- More Mailbox Pitfalls -- 12. Errors and Processes
-- Links -- It's a Trap! -- Old Exceptions, New Concepts -- Exceptions
and Traps -- exit/2 Changes Everything -- Killing Me (Not So) Softly --
Monitors -- Naming Processes -- 13. Designing a Concurrent
Application -- Understanding the Problem -- Defining the Protocol --
Lay Them Foundations -- An Event Module -- Events and Loops --
Adding An Interface -- The Event Server.
Handling Messages -- Hot Code Loving -- I Said, Hide Your Messages
-- A Test Drive -- Adding Supervision -- Namespaces (or Lack Thereof)
-- 14. An Introduction to OTP -- The Common Process, Abstracted --
The Basic Server -- Introducing the Kitty Server -- Generalizing Calls --
Generalizing the Server Loop -- Starter Functions -- Generalizing Kitty
Server -- Specific vs. Generic -- Callback to the Future -- The init
Function -- The handle_call Function -- The handle_cast Function --
The handle_info Function -- The terminate Function -- The
code_change Function -- .BEAM Me Up, Scotty! -- 15. Rage Against the
Finite-State Machines -- What Is a Finite-State Machine? -- Generic
Finite-State Machines -- The init Function -- The StateName Function
-- The handle_event Function -- The handle_sync_event Function --
The code_change and terminate Functions -- A Trading System
Specification -- Show Me Your Moves -- Defining the State Diagrams
and Transitions -- Game Trading Between Two Players -- The Public
Interface -- FSM-to-FSM Functions -- The gen_fsm Callbacks -- That
Was Really Something -- Fit for the Real World? -- 16. Event Handlers
-- Handle This! *pumps shotgun* -- Generic Event Handlers -- The init
and terminate Functions -- The handle_event Function -- The
handle_call Function -- The handle_info Function -- The code_change
Function -- It's Curling Time! -- The Scoreboard -- Game Events --
Alert the Press! -- 17. Who Supervises the Supervisors? -- Supervisor
Concepts -- Using Supervisors -- Restart Strategies -- one_for_one --
one_for_all -- rest_for_one -- simple_one_for_one -- Restart Limits --



Child Specifications -- ChildId -- StartFunc -- Restart -- Shutdown --
Type -- Modules -- Band Practice -- Musicians -- Band Supervisor --
Dynamic Supervision -- Using Standard Supervisors Dynamically --
Using a simple_one_for_one Supervisor.
18. Building an Application -- A Pool of Processes -- The Onion Layer
Theory -- A Pool's Tree -- Implementing the Supervisors -- Working
on the Workers -- Writing a Worker -- Run Pool Run -- Cleaning the
Pool -- 19. Building Applications the OTP Way -- My Other Car Is a Pool
-- The Application Resource File -- Converting the Pool -- The
Application Behavior -- From Chaos to Application -- Library
Applications -- 20. The Count of Applications -- From OTP Application
to Real Application -- The Application File -- The Application Callback
Module and Supervisor -- The Dispatcher -- Returning Results through
CPS -- Dispatching and Receiving -- The Counter -- Run App Run --
Included Applications -- Complex Terminations -- 21. Release Is the
Word -- Fixing the Leaky Pipes -- Terminating the VM -- Updating the
Application Files -- Compiling the Applications -- Releases with
systools -- Creating a Boot File -- Packaging the Release -- Releases
with Reltool -- Reltool Options -- Release-Only Options -- Release-
wide and Application-wide Options -- Module-Specific Options -- All-
levels Options -- That's Dense -- Reltool Recipes -- Development
Versions -- Importing or Exporting Only Part of a Library -- Smaller
Apps for Programmers with Big Hearts -- Released from Releases --
22. Leveling Up in the Process Quest -- The Hiccups of Appups and
Relups -- The Ninth Circle of Erl -- Process Quest -- The regis-1.0.0
Application -- The processquest-1.0.0 Application -- The sockserv-
1.0.0 Application -- The Release -- Making Process Quest Better --
Updating code_change Functions -- Adding Appup Files -- Upgrading
the Release -- Relup Review -- 23. Buckets of Sockets -- IO Lists --
UDP and TCP: Bro-tocols -- UDP Sockets -- TCP Sockets -- More
Control with Inet -- Sockserv, Revisited -- Where to Go from Here? --
24. EUnited Nations Council -- EUnit-What's an EUnit?.
Test Generators -- Fixtures -- More Test Control -- Test
Documentation -- Testing Regis -- He Who Knits EUnits -- 25. Bears,
ETS, Beets: In-Memory NoSQL for Free! -- Why ETS -- The Concepts of
ETS -- ETS Phone Home -- Creating and Deleting Tables -- Inserting
and Looking Up Data -- Meeting Your Match -- You Have Been Selected
-- DETS -- A Little Less Conversation, a Little More Action, Please --
The Interface -- Implementation Details -- 26. Distribunomicon --
This Is My Boomstick -- Fallacies of Distributed Computing -- The
Network Is Reliable -- There Is No Latency -- Bandwidth Is Infinite --
The Network Is Secure -- Topology Doesn't Change -- There Is Only
One Administrator -- Transport Cost Is Zero -- The Network Is
Homogeneous -- Fallacies in a Nutshell -- Dead or Dead-Alive -- My
Other Cap Is a Theorem -- Consistency -- Availability -- Partition
Tolerance -- Zombie Survivors and CAP -- Setting Up an Erlang Cluster
-- Through the Desert on a Node with No Name -- Connecting Nodes
-- More Tools -- Cookies -- Remote Shells -- Hidden Nodes -- The
Walls Are Made of Fire, and the Goggles Do Nothing -- The Calls from
Beyond -- The net_kernel Module -- The global Module -- The rpc
Module -- Burying the Distribunomicon -- 27. Distributed OTP
Applications -- Adding More to OTP -- Taking and Failing Over -- The
Magic 8 Ball -- Building the Application -- The Supervisor Module --
The Server Module -- Making the Application Distributed -- 28.
Common Test for Uncommon Tests -- What Is Common Test? --
Common Test Structure -- Creating a Simple Test Suite -- Running the
Tests -- Testing with State -- Test Groups -- Defining Test Groups --
Test Group Properties -- The Meeting Room -- Test Suites Redux --



Sommario/riassunto

Test Specifications -- Specification File Contents -- Creating a Spec File
-- Running Tests with a Spec File -- Large-Scale Testing.
Creating a Distributed Spec File.

Learn You Some Erlang for Great Good! is a hilariously illustrated guide
to the concurrent functional programming language. As you laugh
along with Hebert's brilliantly quirky drawings, you'll effortlessly pick
up this complex language and have fun while you're at it..


