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The Gibbs measure is a probability measure, which has been an
important object in many problems of probability theory and statistical
mechanics. It is the measure associated with the Hamiltonian of a
physical system (a model) and generalizes the notion of a canonical
ensemble. More importantly, when the Hamiltonian can be written as a
sum of parts, the Gibbs measure has the Markov property (a certain
kind of statistical independence), thus leading to its widespread
appearance in many problems outside of physics such as biology,
Hopfield networks, Markov networks, and Markov logic networks. Mor


